Jump to content

Deputy Discovery and Systems Health Technical Area Lead Dr. Rodney Martin


Recommended Posts

  • Publishers
Posted
Rodney Martin, wearing an olive-colored NASA jacket and a blue dress shirt underneath, smiles at the camera. He is standing in the foreground with Lake Chabot Park in the background.

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

— Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center

Image Credit: NASA / Brandon Torres
Interviewer: NASA / Michelle Zajac

Check out some of our other Faces of NASA.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Avatars for Astronaut Health to Fly on NASA’s Artemis II
      An organ chip for conducting bone marrow experiments in space. Emulate NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.
      The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 
      AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”
      Nicky Fox
      Associate Administrator, NASA Science Mission Directorate
      “AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”
      The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.
      Organ-on-a-chip: mimic for human health
      Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 
      Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.
      Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.
      Bone marrow as bellwether
      The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.
      Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.
      Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.
      To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.
      Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.
      Passenger for research
      “For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”
      During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.
      For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”
      Lisa Carnell
      Director of NASA’s Biological and Physical Sciences Division
      Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.
      Keep Exploring BPS Scientific Goals
      Goals



      Precision Health



      AVATAR



      Quantum Leaps


      Biological & Physical Sciences Division (BPS)

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      As an IT security administrator at NASA’s Johnson Space Center in Houston, Mechele Elliott protects the information systems that support astronaut health and mission readiness.

      The encouragement of a family friend set her on this path, leading to a rewarding and somewhat unexpected career in human spaceflight.

      Mechele Elliott stands in front of a space shuttle cockpit mockup in the lobby of the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Mechele Elliott “While I was caring for my son during his cancer treatment—living in the hospital with him and supporting his recovery at home—a family friend who worked at NASA took notice,” Elliott said. “She quietly observed my strength, organization, and unwavering dedication to my son. One day she called and said, ‘Get your resume together.’”

      Elliott doubted she was qualified for a position at NASA, though the friend was certain she could learn and handle anything after caring for her son. “Her belief in me gave me the courage to take that first step—and it changed the course of my life.”

      The friend’s endorsement helped her land the position. Elliott was nervous at first, since she did not know much about NASA’s operations and had limited prior experience. With time and training, she grew more certain of the value she brought to the team.

      “Reflecting on the numerous personal challenges I have encountered has reinforced my confidence in my ability to overcome obstacles while maintaining a positive outlook throughout my journey,” she said. “I am proud to have successfully adapted and become a productive member of my team.” In her role today, Elliott safeguards NASA’s information systems. She develops, implements, and maintains security policies, procedures, and systems in the Human Health and Performance Directorate, ensuring compliance with federal and NASA-specific security standards. Her work includes managing access control protocols and responding  to security incidents.

      Mechele Elliott in the Neutral Buoyancy Laboratory at Johnson Space Center. Image courtesy of Mechele Elliott One of her most challenging tasks involved assessing, revitalizing, and implementing four outdated security plans through collaboration with a diverse team. “We successfully aligned the security plans with established standards and garnered commendations from NASA leadership,” she said.

      Outside of work, Elliott enjoys several hobbies that help her relax and maintain balance. She began painting at a young age and continues to find calm through her art. She is an avid gardener, in spite of the Houston summer heat, and feels fulfilled by the beauty of her flowers and sharing homegrown fruits and vegetables with her friends and family. She has also earned a reputation as an excellent baker. “I enjoy making cheesecakes for workplace celebrations and I’ve discovered that many of my coworkers enjoy this hobby of mine, as well!”

      Elliott is profoundly grateful for the opportunity to serve at NASA for over 25 years. Looking ahead to the agency’s future, she offers an important piece of advice to up-and-coming team members. “Remain authentic to yourselves, pursue your aspirations with determination, and uphold a commitment to excellence in all your endeavors.”
      Explore More
      7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery 
      Article 5 days ago 3 min read Jeni Morrison Continues a Family Legacy of Service at NASA 
      Article 7 days ago 3 min read NASA Seeks Industry Input on Next Phase of Commercial Space Stations
      Article 1 week ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers Kelly Gilkey, Cy Peverill, Daniel Phan, Chase Haddix, and Ariel Tokarz test portable, handheld X-ray systems for use during future long-duration space missions at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna As NASA plans future human exploration missions to the Moon, Mars, and beyond, new and unique challenges emerge — like communication delays and limited return-to-Earth options — so enhanced medical care capabilities are critical. Crews will need non-invasive imaging technology to diagnose medical conditions, like broken bones or dental injuries.  
      Scientists at NASA’s Glenn Research Center in Cleveland are testing portable, handheld X-ray systems for use during future extended space missions. Having portable X-ray capabilities aboard spacecraft would allow astronauts to immediately assess and treat potential injuries or identify equipment issues without having to disassemble the gear. 
      “Technological innovations like that of the mini-X-ray will help keep our astronauts healthy as we endeavor farther into space than ever before,” said acting NASA Administrator Sean Duffy. “Future missions to the Moon and Mars will be safer due to the research of our scientists at NASA Glenn.” 
      NASA reviewed more than 200 commercial systems — analyzing size, weight, image quality, ease-of-use, cost, and safety — and selected three systems for further testing: MinXray, Remedi, and Fujifilm. 
      “We’re working to provide evidence on why a mini-X-ray system should be included in future space exploration,” said Dr. Chase Haddix, a senior biomedical engineering research contractor working for Universities Space Research Association at NASA Glenn. “These X-rays could be used to detect both clinical and non-clinical diagnostics, meaning they can check an astronaut’s body or identify the location of a tear in an astronaut suit.” 
      Researchers capture X-ray images of a shape memory alloy rover tire at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn is collaborating with other centers, including NASA’s Johnson Space Center in Houston and NASA’s Langley Research Center in Hampton, Virginia, and radiography experts at University Hospitals and Cuyahoga Community College in Cleveland. 
      “We’re fortunate to have enthusiastic medical and radiography experts right here in our community,” said Dr. Cy Peverill, project task lead at NASA Glenn. “Their knowledge and experience are invaluable as we work to test medical technologies that could significantly improve management of astronaut health on future missions to the Moon or Mars.” 
      Cuyahoga Community College contributed anatomical phantoms, which are lifelike models of the human body, in its radiography laboratory on the Western Campus and dental hygiene clinical facility at the Metropolitan Campus. Faculty and students consulted with NASA researchers on essential imaging principles, including patient positioning, image acquisition, and image quality.   
      University Hospitals is partnering with NASA Glenn on a medical study with real patients to compare the performance of the X-ray systems against hospital-grade equipment, focusing on usability, image clarity, and diagnostic accuracy.   
      “Astronauts live and work in small quarters, much smaller spaces than in a hospital,” Haddix said. “The system must be easy to use since astronauts may not be experienced in radiography. The data from these tests will guide the selection of the most suitable system for future missions.” 
      Researchers capture X-ray images of an astronaut spacesuit at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna Using portable X-rays to improve health care in inaccessible areas is not new, with systems deployed to diagnose medical issues in places such as base camps in Nepal and remote villages in South Africa. NASA researchers theorize that if these systems are successful in high elevations and extreme temperatures on Earth, perhaps they are durable enough for space missions. 
      Glenn researchers will continue to collect data from all collaborators, including from an X-ray system sourced by SpaceX that launched in April during the Fram2 mission. The crew captured the first human X-ray images in space during their four-day mission to low Earth orbit. NASA plans to select a device near the end of 2025 and will test the chosen system aboard the International Space Station in 2026 or early 2027.  
      The Mars Campaign Office at NASA Headquarters in Washington and the agency’s Human Research Program at NASA Johnson fund this work as both organizations focus on pursuing technologies and methods to support safe, productive human space travel. 
      Explore More
      2 min read Lydia Rodriguez Builds a Career of Service and Support at NASA 
      Article 2 days ago 3 min read What’s Up: September 2025 Skywatching Tips from NASA
      Saturn’s spectacle, a Conjunction, and the Autumnal Equinox Saturn shines throughout the month, a conjunction…
      Article 2 days ago 2 min read Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the…
      Article 6 days ago View the full article
    • By NASA
      Credit: NASA NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.
      The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.
      Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.
      For more information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
      Johnson Space Center Artemis Commercial Crew International Space Station (ISS) ISS Research Johnson Flight Operations Space Launch System (SLS) View the full article
    • By NASA
      Tess Caswell supports the International Space Station from NASA’s Johnson Space Center in Houston as a capsule communicator, or capcom, as well as through the Extravehicular Activity Office. She is currently on rotation as the Artemis lead capcom, helping to develop training and processes for the Artemis campaign by leveraging her experience supporting the space station.  
      She helps ensure that astronauts aboard the spacecraft receive the right information at the right time. This role involves a range of activities, from learning the language of the spacecraft and its onboard operations to participating in simulations to relay critical information to the crew, especially during dynamic operations or when things go wrong.  
      Read on to learn more about Tess! 
      Tess Caswell serves as lead capsule communicator, or capcom, in the Mission Control Center in Houston for the arrival of NASA’s SpaceX Crew-10 to the International Space Station. NASA/Robert Markowitz Where are you from? 
      Soldotna, Alaska. 
      How would you describe your job to family or friends that may not be familiar with NASA? 
      Capcoms are the people who speak to the astronauts on behalf of Mission Control, and I am the lead for the team of capcoms who will support missions to the Moon as part of NASA’s Artemis campaign.  
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      Remember that space travel is more than just engineers and scientists. It takes all kinds of people to support astronauts in space, including medicine, food science, communications, photography – you name it!
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      I like to encourage young people to think about what part of space travel inspires them. We live in an era where there are many companies leveraging space for different purposes, including tourism, settlement, profit, and exploration. It’s important to think about what aspect of space travel interests you – or use things like internships to figure it out! 
      If you’re excited about space but don’t want to be an engineer, there are still jobs for you. 
      How long have you been working for NASA? 
      Eight years, plus a few internships. 
      What was your path to NASA? 
      Internships and student projects were my path to NASA. As an undergraduate, I worked in a student rocket lab, which gave me firsthand experience building and testing hardware. During the summers, I participated in internships to explore various careers and NASA centers. My final internship led directly to my first job after college as an Environmental and Thermal Operating Systems (ETHOS) flight controller in mission control for the space station. 
      I left NASA for a while to pursue an advanced degree in planetary geology and spent two years working at Blue Origin as the lead flight controller for the New Shepard capsule. Ultimately, though, I am motivated by exploration and chose to return to NASA where that is our focus. I landed in the Extravehicular Activity Office (EVA) within the Flight Operations Directorate after returning from Blue Origin. 
      Tess Caswell suits up in the Extravehicular Mobility Unit at the Neutral Buoyancy Laboratory at NASA’s Sonny Carter Training Facility in Houston during training to become an EVA instructor. NASA/Richie Hindman Is there a space figure you’ve looked up to or someone that inspires you?  
      It’s hard to name a specific figure who inspires me. Instead, it’s the caliber of people overall who work in flight operations at Johnson Space Center. Not just the astronauts, but the folks in mission control, in the backrooms supporting the control center, and on the training teams for astronauts and flight controllers. Every single person demonstrates excellence every day. It inspires me to bring my best self to the table in each and every project. 
      What is your favorite NASA memory or the most meaningful project you’ve worked on during your time with NASA? 
      That is a hard one!  
      My current favorite is probably the day I certified as a capcom for the space station. The first time talking to the crew is both nerve-wracking and exciting. You know the entire space station community stops and listens when you are speaking, but it’s incredibly cool to be privileged with speaking to the crew. So, your first few days are a little scary, but awesome. After I’d been declared certified, the crew called down on Space –to Ground to congratulate me. It was a very special moment. I saved a recording of it! 
      Tess Caswell learns to fly the International Space Station Remote Manipulator System, or Canadarm2, in Canada as part of capcom training. Tess Caswell What do you love sharing about station? 
      The international collaboration required to design, build, and operate the International Space Station is a constant source of inspiration for me.
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      When I give folks tours of mission control, I like to point out the photo of the U.S.-built Unity node and the Russian-built Zarya module mated in the shuttle cargo bay. The idea that those two modules were designed and built in different countries, launched in two different vehicles, and connected for the first time in low Earth orbit reminds me of what we can all do when we work together across geopolitical boundaries. The space station brings people together in a common mission that benefits all of us. 
      If you could have dinner with any astronaut, past or present, who would it be? 
      Sally Ride, definitely. 
      Do you have a favorite space-related memory or moment that stands out to you? 
      If I had to choose one, I’d say it was the day a person from NASA visited my elementary school in 1995. I remember being completely captivated by his presentation and dying to ask questions when he came by my classroom later. It’s a favorite memory because it poured fuel on the spark of my early childhood interest in space exploration. It wasn’t the thing that initially piqued my interest, but that visit made the dream feel attainable and set me on the course that has me at NASA today. 
      What are some of the key projects you have worked on during your time at NASA? What have been your favorite? 
      I’ve worked in mission control for the space station as an ETHOS flight controller and, later, as a capcom. I’ve also certified as an EVA task backroom controller and scripted three spacewalks that were performed on the space station. While working in EVA, I also helped design the products and processes that will be used to design moonwalks for Artemis astronauts and how flight control operations will work during dynamic, science-driven spacewalks.  
       Developing an EVA is a huge integration effort, and you get to work with a broad range of perspectives to build a solid plan. Then, the spacewalks themselves were both challenging and rewarding. They didn’t go exactly to plan, but we kept the crew safe and accomplished our primary objectives! 
      I’m fortunate to have had so many cool experiences while working at NASA, and I know there will be many more. 
      Tess Caswell, right, and geoscientist Dr. Kelsey Young, left, conduct night operations in NASA’s Johnson Space Center rock yard, testing EVA techniques to prepare for future lunar missions.NASA/Norah Moran What are your hobbies/things you enjoy doing outside of work? 
      I like to stay active, including trail running, taekwondo, backpacking, and cross-country skiing (which is a bit hard to train for in Houston). I spend as much time as I can flying my Piper J-3 Cub, trying to make myself a better pilot each time I fly. Finally, I read and write fiction to let my imagination wander. 
      Day launch or night launch? 
      Night launch! 
      Favorite space movie? 
      Apollo 13, hands down! 
      NASA Worm or Meatball logo? 
      Worm – elegant and cool! 
      Every day, we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research digital media from Johnson and other centers and space agencies.  
      Sign up for our weekly email newsletter to get the updates delivered directly to you.  
      Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.  
      Explore More
      3 min read Countdown to Space Station’s Silver Jubilee with Silver Research
      Article 3 days ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 3 months ago 3 min read Meet Alex Olley: Air Force Veteran Powering the Space Station 
      Article 4 months ago View the full article
  • Check out these Videos

×
×
  • Create New...