Jump to content

Deputy Discovery and Systems Health Technical Area Lead Dr. Rodney Martin


Recommended Posts

  • Publishers
Rodney Martin, wearing an olive-colored NASA jacket and a blue dress shirt underneath, smiles at the camera. He is standing in the foreground with Lake Chabot Park in the background.

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

— Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center

Image Credit: NASA / Brandon Torres
Interviewer: NASA / Michelle Zajac

Check out some of our other Faces of NASA.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Conceptualization of the GeoXO constellation.Credits: NOAA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Lockheed Martin Corp. of Littleton, Colorado, to build the spacecraft for NOAA’s Geostationary Extended Observations (GeoXO) satellite program.
      This cost-plus-award-fee contract is valued at approximately $2.27 billion. It includes the development of three spacecraft as well as four options for additional spacecraft. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each spacecraft. The work will take place at Lockheed Martin’s facility in Littleton and NASA’s Kennedy Space Center in Florida.
      The GeoXO constellation will include three operational satellites — east, west and central. Each geostationary, three-axis stabilized spacecraft is designed to host three instruments. The centrally-located spacecraft will carry an infrared sounder and atmospheric composition instrument and can also accommodate a partner payload. Spacecraft in the east and west positions will carry an imager, lightning mapper, and ocean color instrument. They will also support an auxiliary communication payload for the NOAA Data Collection System relay, dissemination, and commanding.
      The contract scope includes the tasks necessary to design, analyze, develop, fabricate, integrate, test, evaluate, and support launch of the GeoXO satellites; provide engineering development units; supply and maintain the ground support equipment and simulators; and support mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the GeoXO program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.
      As part of NOAA’s constellation of geostationary environmental satellites to protect life and property across the Western Hemisphere, the GeoXO program is the follow-on to the Geostationary Operational Environmental Satellites – R (GOES-R) Series Program.
      The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. The advanced capabilities from GeoXO will help assess our changing planet and the evolving needs of the nation’s data users. Together, NASA and NOAA are working to ensure GeoXO’s critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.
      For more information on the GeoXO program, visit:
      Liz Vlock
      Headquarters, Washington
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      John Leslie
      NOAA’s National Environmental Satellite, Data, and Information Service
      Last Updated Jun 18, 2024 LocationNASA Headquarters Related Terms
      GOES (Geostationary Operational Environmental Satellite) Earth Observatory Earth Science Division NOAA (National Oceanic and Atmospheric Administration) Science Mission Directorate View the full article
    • By NASA
      Aurora and airglow are seen from the International Space Station in 2015.Credits: NASA/JSC/ESRS NASA has selected three proposals for concept studies of missions to investigate the complex system of space weather that surrounds our planet and how it’s connected to Earth’s atmosphere.
      The three concepts propose how to enact the DYNAMIC (Dynamical Neutral Atmosphere-Ionosphere Coupling) mission, which was recommended by the 2013 Decadal Survey for Solar and Space Physics. The DYNAMIC mission is designed to study how changes in Earth’s lower atmosphere influence our planet’s upper atmosphere, where space weather like auroras and satellite disruptions are manifested. This knowledge will benefit humanity by helping us understand how space weather can interfere with crucial technology like navigation systems and satellites.
      “Earth and space are an interconnected system that reaches from the heart of our solar system, the Sun, to the lowest reaches of the atmosphere where we live and extends to the edge of our heliosphere – the boundary of interstellar space,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “While space weather can spark the beautiful auroras across our skies, it also has the potential to cause disruptions for us here on Earth and can be dangerous for our spacecraft and astronauts in space. The DYNAMIC mission will expand our understanding of how Earth itself shapes space weather events that influence our home planet.”
      The DYNAMIC mission is designed to make measurements within Earth’s upper atmosphere between about 50-125 miles (80-200 kilometers) in altitude. With multiple spacecraft, DYNAMIC’s simultaneous observations from different locations can give scientists a more complete picture of how waves propagate upwards through this part of the atmosphere.
      NASA’s fiscal year 2023 appropriation directed NASA to initiate this first phase of study. As the first step of a two-step selection process, each proposal will receive $2 million for a concept study. NASA solicited missions with a cost cap of $250 million, which does not include the launch. The studies will last nine months.
      The selected concept teams are:
      University of Colorado, Boulder, led by principal investigator Tomoko Matsuo Key partners include Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland; NASA’s Jet Propulsion Laboratory in Southern California; and Massachusetts Institute of Technology’s Haystack Observatory in Westford, Massachusetts.
      University of Colorado, Boulder, led by principal investigator Aimee Merkel Key partners include BAE Systems in Westminster, Colorado, and the Naval Research Laboratory in Washington.
      Virginia Polytechnic Institute and State University, led by principal investigator Scott Bailey Key partners include Southwest Research Institute in San Antonio, Texas, Space Dynamics Laboratory in Logan, Utah, Global Atmospheric Technologies and Sciences in Newport News, Virginia, and Computational Physics, Inc. in Boulder, Colorado.
      For more information on NASA heliophysics missions, visit:
      Karen Fox
      Headquarters, Washington
      Sarah Frazier
      NASA’s Goddard Space Flight Center
      Last Updated Jun 11, 2024 LocationNASA Headquarters Related Terms
      Space Weather Earth's Atmosphere Heliophysics Science & Research Science Mission Directorate View the full article
    • By NASA
      Managing the Stress of Parenting
      Date: Thursday, June 13, 2024
      Time: 11:00 AM -12:00 PM  CST
      Speakers / POCs: EAP Clinicians Dr. Carla Randolph (carla.e.randolph@nasa.gov) and Dr. Sophia Sills-Tailor (sophia.c.sills-tailor@nasa.gov)
      Parenthood is a beautiful journey, but it comes with its unique set of challenges and stresses. Join us for a dynamic webinar on “Managing the Stress of Parenting,” where we’ll delve into effective strategies for navigating the ups and downs of raising children while maintaining your own well-being and work / life balance. We will share practical tips and valuable insights to help you cultivate resilience, reduce parental stress, and foster healthy family dynamics. From setting boundaries and practicing self-care to building strong support networks and enhancing communication with your children, this webinar offers actionable advice to empower you on your parenting journey.
      This is open for ALL NASA employees! To join this webinar please click here.
      Microsoft Teams Need help?
      Join the meeting now
      Meeting ID: 218 115 856 915
      Passcode: LpDT9k
      Emotional Intelligence in The Workplace
      Date: June 20, 2024
      Time: 10:00 – 11:00 PM CST
      Speaker / POC: Susan Wilcox, (susan.k.wilcox@nasa.gov)
      Unlock the power of emotional intelligence and elevate your professional journey. Join Susan Wilcox (GRC EAP) for this session focused on understanding emotional intelligence and its critical role in workplace interactions and overall success.
      Microsoft Teams Need help?
      Join the meeting now
      Meeting ID: 255 761 699 188
      Passcode: HDAjuP
      Neurodiversity in the Workplacee
      Date: June 25, 2024 
      Time: 2:00 – 3:15 PM CST 
      Host: Office of the Chief Health and Medical Officer (OCHMO) 
      Speaker / POC: Hanna.l.bogner@NASA.gov 
      Join us for a discussion on Neurodiversity in the workplace with Jaclyn Hunt, a Board-Certified Cognitive Specialist (BCCS) and author specializing in working with adults on the autism spectrum. Whether you’re interested in understanding neurodiverse colleagues or are on the spectrum yourself, this presentation covers it all. With one out of every 36 children diagnosed with Autism Spectrum Disorder (ASD) in the United States today, along with over 5 million diagnosed adults, understanding neurodiversity is crucial. This session focuses on educating participants about neurodiversity in the workplace and how to best support individuals on the autism spectrum. Learning about neurodiversity not only helps those on the spectrum function successfully in the world, it also fosters a more accepting and understanding environment enriched with effective communication for all.
      If you have questions you’d like to ask anonymously, please visit our Ask-Ahead Questions page on the Health4Life website. Questions submitted anonymously will be addressed during the presentation.
      Microsoft Teams
      Join the meeting now
      Meeting ID: 215 754 493 389
      Passcode: PgR99V  
      View the full article
    • By NASA
      2 min read
      NASA’s Repository Supports Research of Commercial Astronaut Health  
      Biological data from the Inspiration4 crew has been added to NASA’s Open Science Data Repository, giving researchers access to better understand the impact of space on the human body. SpaceX/Inspiration4 NASA’s Open Science Data Repository provides valuable information to researchers studying the impact of space on the human body. Nearly three years after the Inspiration4 commercial crew launch, biological data from the mission represents the first comprehensive, open-access database to include commercial astronaut health information. 
      Access to astronaut research data from astronauts has historically been limited, due to privacy regulations and concerns, but the field of astronauts is changing as commercial spaceflight becomes feasible for civilians.  
      “Open-access data is fundamentally transforming our approach to spaceflight research,” said Dr. Sylvain Costes, project manager of the Open Science Data Repository. “The repository is instrumental in this transformation, ensuring that all space-related biological and biomedical data are accessible to everyone. This broad access is vital for driving innovation across fields from astronaut health to terrestrial medical sciences.” 
      The collaborative efforts in opening data researchers has led to multiple scientific papers on astronaut health published in Nature in June. The papers represents research to better understand the impact of spaceflight on the human body, how viruses might spread in a zero-gravity environment, and how countermeasures may protect humans on future long-duration missions. 
      Ongoing access to the data captured by commercial astronauts means the research can continue long after the crew returns to Earth, impacting the future of research beyond spaceflight, including cancer and genetic diseases and bone health. 
      “This series of inspiring articles enabled by the repository and enriched by new data generously shared by commercial astronauts aboard the Inspiration4 mission exemplifies our commitment to open science,” said Costes. “By making our data fully accessible and usable, we’re enabling researchers worldwide to explore new frontiers in space biology.” 
      NASA’s Open Science Data Repository is based out of the agency’s Ames Research Center in California’s Silicon Valley. NASA continues to pursue the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and missions to the International Space Station, NASA continues to research innovative ways to keep astronauts healthy as space explorations continues to the Moon, Mars, and beyond. 
      About the Author
      Tara Friesen


      Last Updated Jun 11, 2024 Related Terms
      Ames Research Center Ames Research Center’s Science Directorate Commercial Space Humans in Space Open Science Explore More
      4 min read NASA, IBM Research to Release New AI Model for Weather, Climate


      3 weeks ago
      7 min read Webb Cracks Case of Inflated Exoplanet


      3 weeks ago
      4 min read AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change


      2 months ago
      Keep Exploring Discover More Topics From NASA
      Ames Research Center

      Social Media

      Open Science at NASA

      Humans In Space

      Commercial Space

      View the full article
    • By NASA
      On 3/7/24, Astrophysical Journal published online “X-ray Polarimetry of the Dipping Accreting Neutron Star 4U 1624–49” by M. Lynne Saade (Astrophysics Branch) et al. This is the 51st discovery paper published by the IXPE Science Team. The first author, Lynnie Saade, is a new postdoc working on IXPE and this is her first IXPE paper, which was submitted only a few months after arriving at MSFC.
      Illustration of the Imaging X-ray Polarimetry ExplorerView the full article
  • Check out these Videos

  • Create New...