Jump to content

Recommended Posts

  • Publishers
Posted

Overview

As NASA’s Tracking and Data Relay Satellite (TDRS) constellation approaches retirement, partnerships with commercial industry will play a critical role in the development of future space communications and navigation architecture. Over the next decade, NASA missions will transition towards adopting commercial space-based relay services to fulfil their near-Earth communications needs.

The Space Communications and Navigation (SCaN) program is working to ensure that future missions will continue to have reliable, resilient space and ground communications and navigation infrastructure. Wideband polylingual terminals could become a key technology supporting that infrastructure, by providing seamless roaming capabilities that could allow missions to receive communication signals from multiple SATCOM service providers through the use of software defined radios (SDR). Developed over the last decade, SDR technology enables waveform change in-orbit, allowing for the adoption of new and evolving commercial services by missions as they become available.

Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
Near Space Network antennas at the Alaska Satellite Facility in Fairbanks, Alaska.
NASA

Interoperability to Advance Science 

The goal of NASA’s Wideband User Terminal project is to provide interoperability between government and commercial owned networks for near-Earth services in the near-term by leveraging traditional NASA assets with new commercial infrastructure.  

Cellphone providers adopted roaming technology long ago, allowing devices to jump from network to network without interrupting service. Wideband terminals aim to enable similar roaming capabilities for space communications applications, a capability that has not been available to missions in the past.  

Wideband interoperability technology was developed and tested at NASA’s Glenn Research Center in Cleveland, Ohio, where the first successful test of roaming between multiple network providers was conducted in 2021. 

Commercialization Transition 

Interoperability between industry and government owned network providers could play a key role in NASA’s transition towards commercialization. NASA has relied on the TDRS system to provide near-constant communication links between the ground and satellites in low-Earth orbit for almost 40 years, but the infrastructure was not originally designed for interoperability between networks.  

SCaN is developing wideband technology to help the mission user community transition towards relying on commercial providers, by providing the safeguard option of connecting to the reliable TDRS network while private industry continue to develop and mature their space-based services over the next decade. 

There are numerous potential benefits of providing missions with interoperability between NASA’s legacy TDRS networks and new commercial satcom services, including reducing the risk of data loss and communication delays. Providing missions with a selection of network providers can also help avoid vendor lock-in and keep mission execution on schedule when unexpected circumstances arise.

PExT Demonstration

The Polylingual Experimental Terminal is the focus of this photograph. We see a white antenna dish, approximately 0.6-meters in size, facing the ceiling, sitting on a golden platform. Silver wires resembling tinfoil are shown protruding beneath the antenna dish. The terminal sits on top of a grey table inside a white laboratory.
The Polylingual Experimental Terminal at Johns Hopkins University​
Johns Hopkins University Applied Physics Laboratory

NASA’s Wideband Terminal Project is collaborating with Johns Hopkins University Applied Physics Laboratory to test the prototype Polylingual Experimental Terminal (PExT). Mission objectives include demonstrating interoperability through contact and link management, and forward and return link data flow while roaming between NASA’s TDRS network and three commercial relay networks. The PExT Wideband Terminal will be the first flight demonstration of roaming across government and commercial networks from a single terminal. 

PExT will be integrated with a York Space Systems S-class Bus and launched on the SpaceX Falcon 9 Transporter-11 flight, currently planned for June 2024.  

The terminal will demonstrate various mission scenarios during its six-month testing period, including: 

  • self-pointing capabilities 
  • long-term schedule execution  
  • intra-/inter-network link handoff 
  • waveform adaptation and reloading 
  • command stack protection (crypto) 
  • link fault recovery 

The Wideband Project is currently providing opportunities for the mission user community to take part in extended operation experiments using Wideband technology. Please contact Wideband Technology Lead marie.t.piasecki@nasa.gov for more information. 

PExT Key Features 

  • Wide frequency covers the entire range of commercial and government Ka-Band allocations, including 17.7 GHz to 23.55 GHz Forward, and 27 GHz to 31 GHz Return   
  • Initial data rates reach up to 90 Mbps Forward and 375 Mbps Return. Future data rates are projected up to 490 Mbps Forward and 1 Gbps Return 
  • Supports both NASA and commercial waveforms – including DVB-S2 and CCSDS TDRSS  
  • The body-mounted 0.6-meter antennas are scalable for other missions 
  • Effective Isotropic Radiated Power (EIRP) 46.21 dBW minimum 
  • Gain to Noise G/T ration approximately 6dB/K 
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing.
Team members from the Polylingual Experimental Terminal project and Applied Physics Laboratory stand next to PExT after preparing the terminal for vibration testing. 
Johns Hopkins University Applied Physics Laboratory

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A chevron nozzle is installed on NASA’s Learjet for a mid-March 2001 flight test at Lorain Country Airport to verify that in an emergency, the aircraft could be flown using only the experimental engine. Credit: NASA/Marvin Smith
      Shortly after dawn on March 27, 2001, NASA pilot Bill Rieke took off from an airfield just outside of Phoenix in NASA’s blue-and-white Learjet 25 and flew low over a series of microphones for the first flight test of a groundbreaking NASA technology.
      On one of the plane’s engines was an experimental jagged-edged nozzle that researchers at Glenn Research Center in Cleveland had discovered made aircraft significantly quieter. These initial flight tests were an important step toward using these “chevron nozzles” on modern aircraft, lowering noise levels for communities.
      NASA Glenn has been exploring ways of reducing engine noise since the first jet airliners appeared in the 1950s. New turbofan engines in the 1960s were quieter, but the expansion of the overall airline industry meant that noise was still an issue. With the introduction of noise-limiting mandates in the 1970s, NASA and engine manufacturers embarked on a decades-long search for technologies to lower noise levels.
      NASA researchers discovered that the military’s use of rectangular notches, or tabs, along an engine nozzle’s exit – to help disguise a jet fighter’s infrared signature – could also reduce engine noise by helping mix the hot air from the engine core and the cooler air blowing through the engine fan. In the 1990s, Glenn researcher Dennis Huff and his colleagues discovered that a serrated, or sawtooth, shape, referred to as a chevron, offered more promise.
      Dennis Huff explains chevron nozzles, seen on a table, to U.S. Senator George Voinovich and other visitors inside the Aero-Acoustic Propulsion Laboratory facility in 2006. Huff was head of NASA Glenn Research Center’s Acoustics Branch at this point.Credit: NASA/Marvin Smith NASA contracted with General Electric and Pratt & Whitney to develop an array of tab and chevron designs to be analyzed in Glenn’s unique Aero-Acoustic Propulsion Laboratory (AAPL). Extensive testing in the spring of 1997 showed the possibilities for reducing noise with these types of nozzles.
      Engine manufacturers were impressed with the findings but wary of any technology that might impact performance. So, in 1998, NASA funded engine tests of the 14 most promising designs. The tests revealed the chevron nozzle had a negligible 0.25% reduction of thrust. It was a major development for jet noise research.
      In September 2000, Glenn’s Flight Operations Branch was contacted about the logistics of flight-testing chevron nozzles on the center’s Learjet 25 to verify the ground tests and improve computer modeling. Nothing further came of the request, however, until early the next year when Huff informed Rieke, chief of Flight Operations, that the researchers would like to conduct flight tests in late March—with just eight weeks to prepare. 
      Glenn’s Acoustics Branch worked with colleagues at NASA’s Langley Research Center in Hampton, Virginia, and the Arizona-based engine manufacturer Honeywell on the effort. They planned to conduct testing at Estrella Sailport just outside of Phoenix from March 26 to 28, 2001.

      Bill Rieke and Ellen Tom with the chevron nozzle installed on the Learjet. NASA Glenn Research Center’s small Flight Operations team was heavily involved with icing research and solar cell calibration flights during this period, so arrangements were made for Tom, a Federal Aviation Administration pilot, to assist with the chevron flights. Credit: Courtesy of Bill Rieke With the required safety and design reviews, the eight-week target date would be difficult to meet for any test flight, but this one was particularly challenging as it involved modifications to the engine nacelle. While the special nozzle engineers created for the flights would allow them to switch between a six- and a 12-chevron design during testing, it also got hot quickly. This necessitated the installation of new sensors, rewiring of fire alarm cables, and the presence of an onboard test engineer to monitor the temperatures. The short turnaround also required expedited efforts to obtain flight plan approvals, verify the plane’s airworthiness, and perform normal maintenance activities.
      Despite the challenges, Rieke and a small team delivered the Learjet to Estrella on March 25, as planned. The next day was spent coordinating with the large Langley and Honeywell team and acquiring baseline noise data. The pilots idled the unmodified engine as the Learjet flew over three perpendicular rows of microphones at an altitude of 500 feet and speed of 230 miles per hour.

      View from below as NASA Glenn Research Center’s Learjet 25 passes overhead at the Estrella airfield with the experimental chevron nozzle visible on the left wing.Credit: Courtesy of Bill Rieke The flight patterns were repeated over the next two days while alternately using the two variations of the chevron nozzle. The researchers anecdotally reported that there was no perceptible noise reduction as the aircraft approached, but significant reductions once it passed. Recordings supported these observations and showed that sideline noise was reduced, as well.
      The flights of the Learjet, which was powered by a variation of GE’s J-85 turbojet, were complemented by Honeywell’s turbofan-powered Falcon 20 aircraft. These flights ultimately confirmed the noise reduction found in earlier AAPL tests.
      Overall, the flight tests were so successful that just over a year later the FAA began certifying GE’s CF34–8, the first commercial aircraft engine to incorporate chevron technology. The engine was first flown on a Bombardier CRJ900 in 2003. Continued studies by both NASA and industry led to the improved designs and the incorporation of chevrons into larger engines, such as GE’s GEnx.
      According to Huff, the chevron’s three-decibel noise decrease was analogous to the difference between running two lawnmowers and one. Their comparatively easy integration into engine design and minimal effect on thrust made the chevron a breakthrough in noise-reduction technology. In 2002, NASA presented an innovation award to the Glenn, Langley, and Honeywell team that carried out the flights. Today, airliners such as the 737 MAX and 787 Dreamliner use chevron nozzles to lower noise levels for communities near airports.
      Explore More
      3 min read NASA Selects Three University Teams to Participate in Flight Research 
      Article 6 hours ago 2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
      Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
      Article 2 weeks ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA GRX-810 Licensing Team, GRC

      * Denotes Team Lead
      NASA Ames Research Center
      John Lawson
      NASA Glenn Research Center
      Steven M. Arnold
      Aaron B. Brister
      Robert W. Carter
      Robert H. Earp
      Timothy P. Gabb
      Christopher J. Giuffre
      Paul R. Gradl
      Jason M. Hanna
      Bryan J. Harder
      Amy B. Hiltabidel
      Dale A. Hopkins
      Christopher A. Kantzos
      Michael J. Kulis
      Geoffrey S. Minter
      Brian T. Newbacher
      Callista M. Puchmeyer
      Richard W. Rauser
      Harvey L. Schabes
      Timothy M. Smith*
      Aaron C. Thompson
      Mary F. Wadel
      Austin J. Whitt
      Laura G. Wilson
      NASA’s Marshall Space Flight Center
      Paul Gradl
      HX5, LLC
      Christopher J. Giuffre
      Aaron C. Thompson
      Austin J. Whitt
      University of Toledo
      Richard W. Rauser
      2024 AA Award Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Awards
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Associate Administrator Awards View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      eVTOL Propulsion Team, GRC

      * Denotes Team Lead
      NASA Glenn Research Center
      Aaron D. Anderson
      Devin K. Boyle
      Jeffryes W. Chapman
      Peggy A. Cornell
      Timothy P. Dever
      Justin P. Elchert
      Henry B. Fain
      Xavier Collazo Fernandez
      Matthew G. Granger
      Jonathan M. Gutknecht
      Michael C. Halbig
      Patrick A. Hanlon
      Hashmatullah Hasseeb
      David Hausser
      Scott A. Hensley
      Keith R. Hunker
      Michael J. Hurrell
      Keith P. Johnson
      Greg L. Kimnach
      John M. Koudelka
      Timothy L. Krantz
      Brian P. Malone
      Sandi G. Miller
      Nuha S. Nawash
      Paul M. Nowak
      Joseph J. Pinakidis
      Meelad Ranaiefar
      Trey D. Rupp
      David J. Sadey
      Jonathan A. Salem
      Justin J. Scheidler
      Andrew D. Smith
      Mark A. Stevens
      Thomas F. Tallerico
      Linda M. Taylor
      Casey J. Theman
      Mark J. Valco*
      Joseph S. Wisniewski
      NASA’s Goddard Space Flight Center
      Zachary A. Cameron
      Amentum
      Francis R. Gaspare
      David J. Henrickson
      Ryan M. McManamon
      Alan J. Revilock
      Connecticut Reserve Technologies
      Eric H. Baker
      HX5 Sierra
      Nathan A. Baker
      John W. Gresh
      George E. Horning
      Sigurds L. Lauge
      Brett M. Norris
      Nicolas Umpierre
      Bill J. Vaccareillo
      John Veneziano
      NASA Financial Support Services
      Madeline Duncan
      Ohio Aerospace Institute
      Mrityunjay Singh
      Universities Space Research Association
      Paula J. Heimann
      2024 AA Award Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Awards
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Associate Administrator Awards View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Self-Aligned Focusing Schlieren Team
      * Denotes Team Lead
      NASA Langley Research Center
      Brett F. Bathel*
      Wayne E. Page
      Josh M. Weisberger
      2024 AA Award Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Awards
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Compact Fire Infrared Radiance Spectral tracker, or C-FIRST, is managed an operated by NASA’s Jet Propulsion Laboratory, and supported by NASA’s Earth Science Technology Office. Combining state-of-the-art imaging technology with a compact design, C-FIRST enables scientists to gather data about fires and their impacts on ecosystems with greater accuracy and speed than other instruments. C-FIRST was developed as a spaceborne instrument, and flew onboard NASA’s B200 aircraft in January 2025 to conduct an airborne test.NASA/JPL-Caltech The January wildfires in California devastated local habitats and communities. In an effort to better understand wildfire behavior, NASA scientists and engineers tried to learn from the events by testing new technology.
      The new instrument, the Compact Fire Infrared Radiance Spectral Tracker (c-FIRST), was tested when NASA’s B200 King Air aircraft flew over the wildfires in the Pacific Palisades and Altadena, California. Based at NASA’s Armstrong Flight Research Center in Edwards, California, the aircraft used the c-FIRST instrument to observe the impacts of the fires in near real-time. Due to its small size and ability to efficiently simulate a satellite-based mission, the B200 King Air is uniquely suited for testing c-FIRST.
      Managed and operated by NASA’s Jet Propulsion Laboratory in Southern California, c-FIRST gathers thermal infrared images in high-resolution and other data about the terrain to study the impacts of wildfires on ecology. In a single observation, c-FIRST can capture the full temperature range across a wide area of wildland fires – as well as the cool, unburned background – potentially increasing both the quantity and quality of science data produced.
      “Currently, no instrument is able to cover the entire range of attributes for fires present in the Earth system,” said Sarath Gunapala, principal investigator for c-FIRST at NASA JPL. “This leads to gaps in our understanding of how many fires occur, and of crucial characteristics like size and temperature.”
      For decades, the quality of infrared images has struggled to convey the nuances of high-temperature surfaces above 1,000 degrees Fahrenheit (550 degrees Celsius). Blurry resolution and light saturation of infrared images has inhibited scientists’ understanding of an extremely hot terrain, and thereby also inhibited wildfire research. Historically, images of extremely hot targets often lacked the detail scientists need to understand the range of a fire’s impacts on an ecosystem.
      NASA’s Armstrong Flight Research Center in Edwards, California, flew the B200 King Air in support of the Signals of Opportunity Synthetic Aperture Radar (SoOpSAR) campaign on Feb. 27, 2023.NASA/Steve Freeman To address this, NASA’s Earth Science Technology Office supported JPL’s development of the c-FIRST instrument, combining state-of-the-art imaging technology with a compact and efficient design. When c-FIRST was airborne, scientists could detect smoldering fires more accurately and quickly, while also gathering important information on active fires in near real-time.
      “These smoldering fires can flame up if the wind picks up again,” said Gunapala. “Therefore, the c-FIRST data set could provide very important information for firefighting agencies to fight fires more effectively.”
      For instance, c-FIRST data can help scientists estimate the likelihood of a fire spreading in a certain landscape, allowing officials to more effectively monitor smoldering fires and track how fires evolve. Furthermore, c-FIRST can collect detailed data that can enable scientists to understand how an ecosystem may recover from fire events.
      “The requirements of the c-FIRST instrument meet the flight profile of the King Air,” said KC Sujan, operations engineer for the B200 King Air. “The c-FIRST team wanted a quick integration, the flight speed in the range 130 and 140 knots on a level flight, communication and navigation systems, and the instruments power requirement that are perfectly fit for King Air’s capability.”
      By first testing the instrument onboard the B200 King Air, the c-FIRST team can evaluate its readiness for future satellite missions investigating wildfires. On a changing planet where wildfires are increasingly common, instruments like c-FIRST could provide data that can aid firefighting agencies to fight fires more effectively, and to understand the ecosystemic impacts of extreme weather events.
      Share
      Details
      Last Updated Feb 28, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Earth Science Airborne Science Armstrong Flight Research Center B200 Earth Science Technology Office Earth's Atmosphere General Jet Propulsion Laboratory Explore More
      1 min read Commodity Classic Hyperwall Schedule
      NASA Science at Commodity Classic Hyperwall Schedule, March 2-4, 2025 Join NASA in the Exhibit…
      Article 1 day ago 5 min read Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole
      Article 2 days ago 3 min read NASA Names Stephen Koerner as Acting Director of Johnson Space Center
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Earth Science Projects Division
      Aircraft Flown at Armstrong
      Science in the Air
      View the full article
  • Check out these Videos

×
×
  • Create New...