Jump to content

Mysterious Device Emits Light at Antarctica


Recommended Posts

Searching for anomalies in Antarctica using Google Earth I found an unidentified device measuring 4 meters by 4 meters by 2 meters in height in a remote area near Rothschild Island in Antarctica. It appears that some form of energy is being released from the device leading to the observed emission of light. 

device%20light%20antarctica%20(1).png

A remarkable detail is that the device is placed directly in front of what appears to be two stone walls. 

device%20light%20antarctica%20(2).png

Rothschild Island is an island which is surrounded by mystery, with rumors suggesting covert operations occurring in the vicinity. Interestingly, Google Earth has blacked out the island by overlaying simulated snow. 

device%20light%20antarctica%20(3).png

I don't know what the object could be, but is it plausible that it serves as a power generator providing electricity to operate an unknown underground (alien) device or system in Antarctica, as it appears as if the device is placed above a large opening in the ice crust, and that this supposed power generator plays a role in an operation managed from the island?

device%20light%20antarctica%20(4).png


View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      An international team of astronomers using the NASA/ESA/CSA James Webb Space Telescope have directly imaged an exoplanet roughly 12 light-years from Earth. While there were hints that the planet existed, it had not been confirmed until Webb imaged it. The planet is one of the coldest exoplanets observed to date.
      View the full article
    • By NASA
      6 Min Read NASA’s Webb Images Cold Exoplanet 12 Light-Years Away
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line (full image below) An international team of astronomers using NASA’s James Webb Space Telescope has directly imaged an exoplanet roughly 12 light-years from Earth. The planet, Epsilon Indi Ab, is one of the coldest exoplanets observed to date.
      The planet is several times the mass of Jupiter and orbits the K-type star Epsilon Indi A (Eps Ind A), which is around the age of our Sun, but slightly cooler. The team observed Epsilon Indi Ab using the coronagraph on Webb’s MIRI (Mid-Infrared Instrument). Only a few tens of exoplanets have been directly imaged previously by space- and ground-based observatories.
      Image A: Exoplanet Epsilon Indi Ab
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line. Epsilon Indi Ab is one of the coldest exoplanets ever directly imaged. Light at 10.6 microns was assigned the color blue, while light at 15.5 microns was assigned the color orange. MIRI did not resolve the planet, which is a point source. “Our prior observations of this system have been more indirect measurements of the star, which actually allowed us to see ahead of time that there was likely a giant planet in this system tugging on the star,” said team member Caroline Morley of the University of Texas at Austin. “That’s why our team chose this system to observe first with Webb.”
      “This discovery is exciting because the planet is quite similar to Jupiter — it is a little warmer and is more massive, but is more similar to Jupiter than any other planet that has been imaged so far,” added lead author Elisabeth Matthews of the Max Planck Institute for Astronomy in Germany.
      Previously imaged exoplanets tend to be the youngest, hottest exoplanets that are still radiating much of the energy from when they first formed. As planets cool and contract over their lifetime, they become significantly fainter and therefore harder to image.
      A Solar System Analog
      “Cold planets are very faint, and most of their emission is in the mid-infrared,” explained Matthews. “Webb is ideally suited to conduct mid-infrared imaging, which is extremely hard to do from the ground. We also needed good spatial resolution to separate the planet and the star in our images, and the large Webb mirror is extremely helpful in this aspect.”
      Epsilon Indi Ab is one of the coldest exoplanets to be directly detected, with an estimated temperature of 35 degrees Fahrenheit (2 degrees Celsius) — colder than any other imaged planet beyond our solar system, and colder than all but one free-floating brown dwarf. The planet is only around 180 degrees Fahrenheit (100 degrees Celsius) warmer than gas giants in our solar system. This provides a rare opportunity for astronomers to study the atmospheric composition of true solar system analogs.
      “Astronomers have been imagining planets in this system for decades; fictional planets orbiting Epsilon Indi have been the sites of Star Trek episodes, novels, and video games like Halo,” added Morley. “It’s exciting to actually see a planet there ourselves, and begin to measure its properties.”
      Not Quite As Predicted
      Epsilon Indi Ab is the twelfth closest exoplanet to Earth known to date and the closest planet more massive than Jupiter. The science team chose to study Eps Ind A because the system showed hints of a possible planetary body using a technique called radial velocity, which measures the back-and-forth wobbles of the host star along our line of sight.
      “While we expected to image a planet in this system, because there were radial velocity indications of its presence, the planet we found isn’t what we had predicted,” shared Matthews. “It’s about twice as massive, a little farther from its star, and has a different orbit than we expected. The cause of this discrepancy remains an open question. The atmosphere of the planet also appears to be a little different than the model predictions. So far we only have a few photometric measurements of the atmosphere, meaning that it is hard to draw conclusions, but the planet is fainter than expected at shorter wavelengths.”
      The team believes this may mean there is significant methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere that are absorbing the shorter wavelengths of light. It might also suggest a very cloudy atmosphere.
      The direct imaging of exoplanets is particularly valuable for characterization. Scientists can directly collect light from the observed planet and compare its brightness at different wavelengths. So far, the science team has only detected Epsilon Indi Ab at a few wavelengths, but they hope to revisit the planet with Webb to conduct both photometric and spectroscopic observations in the future. They also hope to detect other similar planets with Webb to find possible trends about their atmospheres and how these objects form.
      NASA’s upcoming Nancy Grace Roman Space Telescope will use a coronagraph to demonstrate direct imaging technology by photographing Jupiter-like worlds orbiting Sun-like stars – something that has never been done before. These results will pave the way for future missions to study worlds that are even more Earth-like.
      These results were taken with Webb’s Cycle 1 General Observer program 2243 and have been published in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results published in the journal Nature.

      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Hannah Braun hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.

      Related Information
      Animation: Eclipse/Coronagraph Animation
      Webb Blog: NASA’s Webb Takes Its First-Ever Direct Image of Distant World
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Article: Webb’s Impact on Exoplanet Research
      NASA’s Exoplanet Website
      More Webb News
      More Webb Images
      Webb Mission Page

      Related For Kids
      What is a exoplanet?
      What is the Webb Telescope?
      SpacePlace for Kids

      En Español
      Para Niños : Qué es una exoplaneta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Exoplanets
      Exoplanet Stories
      Universe
      Share
      Details
      Last Updated Jul 23, 2024 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms
      Astrophysics Exoplanet Science Exoplanets Gas Giant Exoplanets Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By NASA
      Rebekah Hounsell is an assistant research scientist working on ways to optimize and build infrastructure for future observations made by the Nancy Grace Roman Space Telescope. The mission will shed light on many astrophysics topics, like dark energy, which are currently shrouded in mystery. Rebekah also works as a support scientist for the TESS (Transiting Exoplanet Survey Satellite) mission, helping scientists access and analyze data.
      Name: Rebekah Hounsell
      Title: Assistant Research Scientist
      Formal Job Classification: Support Scientist for the TESS mission and Co-Principal Investigator of the Roman Supernova Project Infrastructure Team (PIT)
      Organization: Code 667.0
      Rebekah Hounsell knew she wanted to study space from a very young age. Now, she’s a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn What do you do and what is most interesting about your role at Goddard?
      I am fortunate to have several roles at Goddard. I am a support scientist for TESS. Here I aid the community in accessing and analyzing TESS data. I am a co-principal investigator of a Roman project infrastructure team, focusing on building infrastructure to support supernova cosmology with the Roman HLTDS (High Latitude Time-Domain Survey). In addition, I am part of the Physics of the Cosmos program analysis group executive committee, co-chairing both the Cosmic Structure Science interest group and the Time-Domain and Multi-Messenger Astrophysics Science interest group. In these roles I have been fortunate enough to get a glimpse into how missions such as TESS and Roman work and how we can make them a success for the community. Missions like TESS are paving the way for future wide area surveys like Roman, providing a plethora of high cadence transient and variable star data, which can be used to gain a better understanding of our universe and our place within it.
      How will your current work influence the Nancy Grace Roman Space Telescope’s future observations?
      The Roman team I am leading is tasked with developing a pixels-to-cosmology pipeline for the analysis of supernova data from the HLTDS. What this means is that we will develop tools to aid the community in obtaining supernova lightcurves and prism spectra, which are precise enough to be used in testing various cosmological modes. We are also working to develop tools which will allow the community to test various HLTDS designs, adjusting cadence, filters, exposure times, etc., to best optimize its output for their science.
      What got you interested in astrophysics? What was your path to your current role?
      When I was a child I lived in a very rural area in England, with little to no light pollution. I had a wonderful view of the night sky and was fascinated by stars. I remember when I found out that the universe was expanding and my first thought was “into what?” I think it was that which fueled my curiosity about space and pushed me into astrophysics. At about 10 years old, I decided astrophysics was the path for me, and after that I really started to focus on physics and math at school.
      At 18, 19 I went to Liverpool University/Liverpool John Moores and completed my master’s in astrophysics in 2008. I then went on to obtain my Ph.D., focusing on classical and recurrent novae. In 2012 I received my first postdoc at STScI (the Space Telescope Science Institute in Baltimore). It was at STScI that I learned about how the instruments operating on Hubble worked and figured out that what I really loved doing was working on data and improving it. At the time however, I wasn’t ready to leave academia altogether, so I took another postdoc at the University of Illinois Champaign Urbana/UC Santa Cruz. It was here that I first started working on Roman, only back then it was known as WFIRST. I was a member of a Supernova Science Investigation Team for WFIRST and worked to optimize the design of what was then known as the SN survey, later to become the HLTDS. During this time I published a paper that created some of the most realistic simulations of the survey, including various statistical and systematic effects. After this I headed to the University of Pennsylvania to work on core collapse supernovae from the Dark Energy Survey. This was an exciting data set, but again I realized what I really liked doing was working on data from or for a mission. As such I took my current job at NASA.
      Rebekah stands by a model of NASA’s upcoming Nancy Grace Roman Space Telescope. The observatory’s deployable aperture cover, or sun shade, is visible in the background in the largest clean room at Goddard.NASA/David Friedlander What are you most looking forward to exploring through Roman’s eyes?
      Given the nature of the mission, Roman is going to discover a plethora of transient events. Some of these will be extremely rare and if caught in one of Roman’s high cadenced, deep fields, the data obtained will be able to shed new light on the physics driving these phenomena. I am also excited about these data being used with those from other observatories including the Vera C. Rubin Observatory and NASA’s James Webb Space Telescope.
      What has surprised you the most about the universe as you’ve learned more about it?
      We are still discovering so many new things which shed new light on the universe, its evolution, and our place in it. In recent years we have learned about kilonovae, gravitational waves, and we’ve discovered various diverse supernovae. There are so many extreme and complex events that we are still trying to understand, and I suspect that Roman will reveal even more.
      What is your favorite thing about working for NASA?
      There is no one path to working at NASA. I have met so many people who entered into the field following completely different paths than myself. I love this. We all have something different to bring to the table and those differences are what makes NASA what it is today.
      A portrait of Rebekah in front of the NASA meatball.NASA/David Friedlander What hobbies fill your time outside of work?
      I like to paint and draw. I also enjoy looking after animals. I also love participating in outreach events. When I lived in Philly I helped to set up the Astronomy on Tap branch there. I think it is important to talk about what we do and why it is needed.
      What advice do you have for others who are interested in working in astronomy?
      There is no one path. Don’t think you have to complete x, y, z steps and then you make it. That is not true. Do what you are passionate about, what you enjoy to learn about. And most importantly ask questions! Learn about what others are doing in the field, how they got there, and figure out what works for you.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Jul 16, 2024 ContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      People of NASA Careers Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard Women at NASA Explore More
      10 min read Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars
      Article 2 months ago 8 min read Joshua Schlieder: Feet on the Ground, Head in the Stars
      Goddard astrophysicist Dr. Joshua Schlieder supports NASA's Roman Space Telescope and Swift Observatory with creativity,…
      Article 6 months ago 8 min read Melissa Vess: Triathlete and Roman Spacecraft Systems Engineer
      Article 3 years ago View the full article
    • By European Space Agency
      Production of Galileo Second Generation satellites advances at full speed after two independent Satellite Critical Design Review boards have confirmed that the satellite designs of the respective industries meet all mission and performance requirements. This achievement is another crucial milestone hit on time in the ambitious schedule to develop the first 12 satellites of the Galileo Second Generation fleet.
      View the full article
  • Check out these Videos

×
×
  • Create New...