Jump to content

El análisis de la NASA confirma que 2023 fue el año más cálido registrado


Recommended Posts

  • Publishers
Posted
Data visualization of global temperature anomalies progressing from 1880 to 2023 mapped onto Earth. The map uses color to represent anomalies, ranging from blue for below average temperatures, white for temperatures at baseline, and yellows ranging through oranges and reds to represent higher and higher than average temperatures. At the beginning of the time series, the map is primarily blues and whites, with a few spots of yellow, indicating that temperatures overall are below the baseline. As time progresses, the colors shift and move, with less and less blue and white and more and more yellow, then orange, and red. By 2023, the map is mostly yellow with lots of orange and red. The Arctic region, Europe, Asia, North America, central South America, and the Antarctic peninsula are all dark red, indicating the highest temperature anomalies.
Este mapa de la Tierra en 2023 muestra las anomalías de la temperatura global de la superficie, es decir, cuánto más cálida o más fría estuvo cada región del planeta en comparación con el promedio del período de 1951 a 1980. Las temperaturas normales se muestran en blanco, las superiores a las normales en rojo y naranja, y las inferiores a las normales en azul. Una versión animada de este mapa muestra la evolución de las anomalías de la temperatura global a lo largo del tiempo, desde 1880. Descarga esta visualización del Estudio de Visualización Científica Goddard de la NASA: https://svsdev.gsfc.nasa.gov/5207.
Credits: Estudio de Visualización Científica del Centro Goddard de la NASA

Read this release in English here.

En el año 2023, la temperatura promedio de la superficie de la Tierra fue la más cálida que se haya registrado, según un análisis de la NASA. Las temperaturas globales del año pasado estuvieron alrededor de 1,2 grados Celsius (2,1 grados Fahrenheit) por encima del promedio para el período de referencia de la NASA (de 1951 a 1980), informaron científicos del Instituto Goddard de Investigaciones Espaciales (GISS, por sus siglas en inglés) de la NASA en Nueva York.

“El informe de la temperatura global de la NASA y la NOAA confirma lo que miles de millones de personas alrededor del mundo experimentaron el año pasado: estamos frente a una crisis climática”, dijo el administrador de la NASA Bill Nelson. “Desde calor extremo, a incendios forestales, hasta el aumento del nivel del mar, podemos ver que nuestra Tierra está cambiando. Todavía queda trabajo por hacer, pero el presidente Biden y comunidades de todo Estados Unidos están tomando más medidas que nunca para reducir los riesgos climáticos y ayudar a las comunidades a ser más resistentes, y la NASA seguirá utilizando nuestra posición estratégica en el espacio para traer a la Tierra datos climáticos críticos que sean comprensibles y accesibles para todas las personas. La NASA y la Administración Biden-Harris están trabajando para proteger nuestro planeta y a sus habitantes, para esta generación y para la siguiente”.

En 2023, cientos de millones de personas en todo el planeta experimentaron calor extremo, y cada mes, de junio a diciembre, estableció un récord mundial para el mes respectivo. Julio fue el mes más caluroso jamás registrado. En general, la Tierra fue alrededor de 1,4 grados Celsius (o unos 2,5 grados Fahrenheit) más calurosa en 2023 que el promedio de finales del siglo XIX, cuando comenzó el mantenimiento de los registros modernos.

“El calentamiento excepcional que estamos experimentando no es algo que hayamos visto en la historia de la humanidad”, dijo Gavin Schmidt, director del GISS. “Se debe principalmente a nuestras emisiones de combustibles fósiles, y estamos observando sus impactos en las olas de calor, las lluvias intensas y las inundaciones costeras”.

Si bien los científicos tienen pruebas concluyentes de que la tendencia del planeta al calentamiento a largo plazo está impulsada por la actividad humana, siguen examinando otros fenómenos que pueden afectar los cambios anuales o plurianuales del clima, como El Niño, los aerosoles y la contaminación, y las erupciones volcánicas.

Normalmente, la mayor fuente de variabilidad interanual es el patrón climático oceánico El Niño-Oscilación del Sur, en el océano Pacífico. El patrón tiene dos fases, El Niño y La Niña, cuando las temperaturas de la superficie del mar a lo largo del ecuador cambian entre temperaturas más cálidas, promedio y más frías. En el período de 2020 a 2022, el océano Pacífico experimentó tres fenómenos consecutivos de La Niña, los cuales tienden a enfriar las temperaturas globales. En mayo de 2023, el océano pasó de La Niña a El Niño, lo que a menudo coincide con los años más calurosos en los registros.

Sin embargo, las temperaturas récord en la segunda mitad de 2023 ocurrieron antes del pico del actual fenómeno de El Niño. Los científicos esperan observar los mayores impactos de El Niño en febrero, marzo y abril.

Line graph with monthly temperature anomalies from each year from 1880 to 2023 growing across the graph to create a stacked bell shape. The Y-axis is labeled negative 3 degrees Celsius to 3 degrees Celsius and the X-axis has each month from January to December. As time goes on, the curved lines seem to stack higher and higher, and the colors of the lines change from white and light blue to light red, and then dark red. The 2023 line, a thicker red line than the others, rises high above the rest, especially starting in May and running through December, where there is space between it and the rest of the years.
Esta visualización de datos, que se actualiza mensualmente, muestra el ciclo estacional de variación de la temperatura en la superficie de la Tierra, y cómo esas temperaturas se desvían de la media entre 1951 y 1980. Los datos proceden del Análisis de la Temperatura Superficial del GISS y son de acceso público aquí. Las desviaciones estacionales de temperatura se basan en los datos del reanálisis MERRA-2 aquí.
Credits: Estudio de Visualización Científica del Centro Goddard de la NASA

Los científicos también han investigado los posibles impactos de la erupción de enero de 2022 del volcán submarino Hunga Tonga-Hunga Ha’apai, el cual arrojó vapor de agua y partículas finas, o aerosoles, a la estratosfera. Un estudio reciente descubrió que los aerosoles volcánicos, al reflejar la luz solar lejos de la superficie de la Tierra, provocaron un ligero enfriamiento general de unos 0,1 grados Celsius (menos de 0,2 grados Fahrenheit) en el hemisferio sur después de la erupción.

“Incluso con factores de enfriamiento ocasionales, como volcanes o aerosoles, seguiremos batiendo récords mientras las emisiones de gases de efecto invernadero sigan aumentando”, afirmó Schmidt. “Y, desafortunadamente, el año pasado nuevamente volvimos a establecer un nuevo récord de emisiones de gases de efecto invernadero”.

“El año récord de 2023 subraya la importancia de tomar medidas urgentes y continuadas para hacer frente al cambio climático”, declaró Pam Melroy, administradora adjunta de la NASA. “La legislación reciente ha proporcionado la mayor inversión climática del gobierno de EE.UU., incluyendo miles de millones para fortalecer la resiliencia de EE.UU. a los crecientes impactos de la crisis climática. En su calidad de agencia centrada en el estudio de nuestro clima cambiante, la flota de satélites de observación de la Tierra de la NASA seguirá proporcionando datos críticos de nuestro planeta a escala para ayudar a toda la gente a tomar decisiones informadas”.

Ciencia abierta en acción

La NASA prepara su registro de temperaturas utilizando los datos de la temperatura del aire de la superficie recopilados de decenas de miles de estaciones meteorológicas, así como datos de la temperatura de la superficie del mar adquiridos por instrumentos en barcos y boyas. Estos datos son analizados utilizando métodos que toman en cuenta el variado distanciamiento de las estaciones de temperatura en todo el mundo y los efectos del calor urbano que podrían sesgar los cálculos.

Los análisis independientes de la Administración Nacional Oceánica y Atmosférica (NOAA, por sus siglas en inglés) y el Centro Hadley (parte de la Oficina Meteorológica del Reino Unido) concluyeron que las temperaturas globales de la superficie para 2023 fueron las más altas desde que comenzaron los registros modernos. Estos científicos utilizan gran parte de los mismos datos de temperatura en sus análisis, pero emplean diferentes metodologías. Aunque las clasificaciones pueden diferir ligeramente entre los registros, estos coinciden en términos generales y muestran el mismo calentamiento continuo a largo plazo en las últimas décadas.

Aprovechando medio siglo de investigaciones, observaciones, y modelos, la Administración Biden-Harris, incluyendo la NASA y varios socios federales, recientemente lanzaron el Centro de Gases de Efecto Invernadero de EE.UU. para que los responsables de la toma de decisiones y los ciudadanos puedan acceder fácilmente a datos climáticos críticos. Este centro apoya la colaboración entre agencias gubernamentales de EE.UU. y socios del sector privado y organizaciones sin fines de lucro, para poner a disposición en línea datos aéreos, terrestres y espaciales y recursos.

El conjunto completo de datos de la NASA sobre las temperaturas de la superficie global hasta 2023, así como los detalles con el código de cómo los científicos de la NASA llevaron a cabo sus análisis, están disponibles públicamente en el GISS. GISS es un laboratorio de la NASA administrado por la División de Ciencias de la Tierra en el Centro de Vuelo Espacial Goddard de la agencia en Greenbelt, Maryland. Este laboratorio está afiliado al instituto de la Tierra y la Escuela de Ingeniería y Ciencias Aplicadas de la Universidad de Columbia en Nueva York.

Para más información sobre la NASA, visita:

https://www.nasa.gov/es

María José Viñas / Karen Fox
Sede, Washington
240-458-0248 / 202-358-1600
maria-jose.vinasgarcia@nasa.gov / karen.fox@nasa.gov

Peter Jacobs
Centro de Vuelo Espacial Goddard de la NASA
Greenbelt, MD
301-286-0535
peter.jacobs@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame

      A robot for space and the workplace

      Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact. 

      Some of the toughest electronic chips on and off Earth

      Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles. 
      From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.

      Hydrogen sensors that could go the distance on other worlds

      Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
      With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there. 

      Advanced materials research to make travel safer

      Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.  
      Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.

      Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
      Read More Share
      Details
      Last Updated May 09, 2025 Related Terms
      Technology Technology Transfer Technology Transfer & Spinoffs Explore More
      3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
      Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Este artículo es para estudiantes de 5.o a 8.o grado.
      Cada vez que un astronauta sale de un vehículo espacial, se dice que hace una actividad extravehicular (EVA, por sus siglas en inglés). A esto también se le llama caminata espacial.
      El astronauta ruso Alexei Leonov hizo la primera caminata espacial el 18 de marzo de 1965. La primera caminata espacial duró 10 minutos.
      El astronauta Ed White hizo la primera caminata espacial de un estadounidense durante la misión Géminis 4, el 3 de junio de 1965. La caminata espacial de White duró 23 minutos.
      Hoy en día, las caminatas espaciales se hacen en el exterior de la Estación Espacial Internacional (EEI). Las caminatas espaciales suelen durar entre cinco y ocho horas, según el trabajo a realizar.
      El récord mundial de más caminatas espaciales lo tiene el cosmonauta ruso Anatoly Solovyev. Hizo 16 caminatas espaciales por un total de más de 82 horas en el espacio exterior. Cuatro astronautas de la NASA tienen un empate para la mayor cantidad de caminatas espaciales. Michael López-Alegría (Mike L.A.), Peggy Whitson, Bob Behnken y Chris Cassidy han hecho 10 caminatas espaciales cada uno. Mike L.A. tiene el récord de Estados Unidos para la mayor cantidad de tiempo en caminatas espaciales. Su total es de más de 67 horas.
      ¿Por qué los astronautas llevan a cabo caminatas espaciales?
      Los astronautas hacen caminatas espaciales por muchas razones. Las caminatas espaciales permiten a los astronautas trabajar fuera de su nave espacial mientras aún están en el espacio. Un trabajo que hacen los astronautas en una caminata espacial son los experimentos científicos. Se pueden sujetar experimentos en el exterior de una nave espacial para ver cómo el entorno espacial afecta diferentes objetos. Los astronautas colocan los experimentos fuera de la nave espacial durante una caminata espacial. Vuelven a salir para recuperar los experimentos cuando terminan.
      Los astronautas también pueden poner a prueba nuevos equipos y reparar los satélites o sus naves espaciales mientras están en órbita. Al hacer caminatas espaciales, los astronautas pueden reparar equipos que, de otro modo, tendrían que ser devueltos a la Tierra para su reparación.
      _____________________________________________________________________________
      Palabras que debes saber
      radiación: una forma de energía que se emite, o transmite, en forma de rayos, ondas electromagnéticas o partículas
      _____________________________________________________________________________
      ¿Cómo hacen los astronautas las caminatas espaciales?
      Cuando los astronautas hacen caminatas espaciales, usan trajes espaciales. Los trajes espaciales los protegen del duro entorno del espacio. Protegen a los astronautas de las temperaturas extremas de calor y frío, del dañino polvo espacial y de la radiación. Los trajes espaciales también les dan a los astronautas oxígeno para respirar y agua para beber durante las caminatas espaciales.
      Los astronautas se visten con sus trajes espaciales varias horas antes de hacer una caminata espacial. Los trajes están presurizados. Esto significa que los trajes están llenos de oxígeno. Los trajes espaciales están presurizados para mantener los fluidos del cuerpo en estado líquido.
      Una vez que tienen puestos sus trajes, los astronautas respiran oxígeno al 100% durante varias horas hasta que todo el nitrógeno sale de su cuerpo. Tener nitrógeno en el cuerpo durante una caminata espacial puede hacer que se formen burbujas de gas en el cuerpo. Estas burbujas de gas pueden hacer que los astronautas sientan dolor en articulaciones como los hombros, los codos, las muñecas y las rodillas. Esta condición se llama “enfermedad de los buzos” o síndrome de descompresión. La misma condición puede afectar a los buceadores que usan tanques de oxígeno para respirar debajo del agua.
      Los astronautas ahora están listos para salir de la nave espacial. Salen de la nave espacial a través de una puerta especial llamada compuerta de aire. La compuerta de aire tiene dos puertas. Cuando los astronautas están dentro de la nave espacial, la compuerta de aire es hermética, lo que significa que no puede salir el aire. Cuando los astronautas se preparan para salir a una caminata espacial, pasan por la primera puerta y la cierran herméticamente detrás de ellos. Luego pueden abrir la segunda puerta sin que el aire se escape de la nave espacial. Después de una caminata espacial, los astronautas regresan al interior a través de la compuerta de aire. Cuando un astronauta se quita el traje espacial, se dice que sale del traje.
      Los astronautas usan pasamanos en la estación espacial para desplazarse de un lugar a otro. A veces, se usa un gran brazo robótico para mover a los astronautas en las caminatas espaciales. Los astronautas están sujetos al brazo robótico con una correa para los pies.
      Los astronautas ahora están listos para salir de la nave espacial. Salen de la nave espacial por una puerta especial llamada compuerta de aire. La compuerta de aire tiene dos puertas. Cuando los astronautas están dentro de la nave espacial, la compuerta de aire es hermética, lo que significa que no puede salir el aire. Cuando los astronautas se preparan para salir a una caminata espacial, pasan por la primera puerta y la cierran herméticamente detrás de ellos. Luego pueden abrir la segunda puerta sin que el aire se salga de la nave espacial. Después de una caminata espacial, los astronautas regresan al interior a través de la compuerta de aire.
      ¿Cómo se mantienen seguros los astronautas durante las caminatas espaciales?
      Cuando hacen una caminata espacial, los astronautas usan correas de seguridad para sujetarse a su nave espacial. Las correas son como cuerdas. Un extremo está enganchado al caminante espacial. El otro extremo está conectado al vehículo. Las correas de seguridad evitan que los astronautas se alejen flotando en el espacio. Los astronautas también usan correas para evitar que las herramientas se alejen flotando. Atan las herramientas a sus trajes espaciales con correas.
      Otra forma en que los astronautas se mantienen seguros durante las caminatas espaciales es usando una mochila llamada SAFER. SAFER son las siglas en inglés de Ayuda Simplificada para Rescate en Actividad Extravehicular. El SAFER se usa como una mochila. Utiliza pequeños propulsores a reacción para permitir que el astronauta se desplace por el espacio. Si un astronauta se soltara y se alejara flotando, SAFER le ayudaría a volar de regreso a la nave espacial. Los astronautas controlan SAFER con una pequeña palanca de mando.
      ¿Cómo entrenan los astronautas para las caminatas espaciales?
      Una forma en que los astronautas se entrenan para las caminatas espaciales es nadando. Flotar en el espacio es muy parecido a flotar en el agua. Los astronautas practican las caminatas espaciales debajo del agua en una gran piscina cerca del Centro Espacial Johnson de la NASA en Houston, Texas.
      La piscina se llama Laboratorio de Flotabilidad Neutral (NBL, por sus siglas en inglés). La piscina tiene capacidad para unos 23,5 millones de litros (6,2 millones de galones) de agua. Por cada hora que pasen en una caminata espacial, los astronautas deben entrenar siete horas en la piscina del NBL.
      Otra forma en que los astronautas practican para una caminata espacial es utilizando la realidad virtual. Los astronautas usan un casco que tiene una pantalla de video dentro y guantes especiales. En la pantalla dentro del casco se muestra un video de la simulación. Los guantes especiales permiten mostrar los movimientos de los astronautas con el video. La simulación de realidad virtual se ve y se siente como una caminata espacial.
      Read this article in English here: What Is a Spacewalk? (Grades 5-8)
      Explore More For Students Grades 5-8
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, corta madera contrachapada a medida para las tablas del piso temporal del avión demostrador experimental X-66 el 26 de agosto de 2024.NASA/Steve Freeman Lee esta historia en español aquí.
      La NASA diseño unas tablas de piso temporales para el avión MD-90, que se utilizaran mientras el avión se transforma en el demostrador experimental X-66. Estas tablas de piso protegerán el piso original y agilizarán el proceso de modificación.  
      En apoyo al proyecto Demostrador de Vuelo Sostenible de la agencia, un pequeño equipo del Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, construyó tablas de piso temporales para ahorrarle tiempo y recursos al proyecto. La retirada e instalación repetidas del piso original durante el proceso de modificación requería mucho tiempo. El uso de paneles temporales también garantiza la protección de las tablas del piso original y su aptitud para el vuelo cuando se finalicen las modificaciones y se vuelva a instalar el piso original. 
      “La tarea de crear las tablas de piso temporales para el MD-90 implica un proceso meticuloso dirigido a facilitar las modificaciones, manteniendo la seguridad y la eficacia. La necesidad de estas tablas de piso temporales surge del detallado procedimiento necesario para retirar y reinstalar los pisos originales del fabricante (OEM, por su acrónimo inglés),” explica Jason Nelson, jefe de fabricación experimental. Él es uno de los dos miembros del equipo de fabricación – un técnico de ingeniería y un inspector – que fabrica acerca de 50 tablas de piso temporales, con dimensiones que varían entre 20 pulgadas por 36 pulgadas y 42 pulgadas por 75 pulgadas. 
      Una máquina de madera corta agujeros precisos en madera contrachapada para las tablas del piso temporal el 26 de agosto de 2024, en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California. El piso fue diseñado para el avión de demonstración experimental X-66. NASA/Steve Freeman Nelson continuó, “Como estas tablas OEM se quitarán y volverán a instalar varias veces para acomodar las modificaciones necesarias, las tablas temporales ahorrarán al equipo tiempo y recursos valiosos. También proporcionarán el mismo nivel de seguridad y resistencia que las tablas OEM, garantizando que el proceso se desarrolle sin problemas y sin comprometer la calidad.” 
      El diseño y la creación de prototipos del piso fue un proceso meticuloso, pero la solución temporal desempeña un papel crucial en la optimización del tiempo y los recursos en los esfuerzos de la NASA por avanzar en la seguridad y la eficiencia de los viajes aéreos. El proyecto Demostrador de Vuelo Sostenible de la agencia busca informar la próxima generación de aviones pasajeros de un solo pasillo, que son las aeronaves más comunes de aviación comercial de todo el mundo. La NASA se asoció con Boeing para desarrollar el avión de demostración experimental X-66.  El Taller de Fabricación Experimental de Armstrong de la NASA lleva a cabo modificaciones y trabajos de reparación en aeronaves, que van desde la creación de algo tan pequeño como un soporte de aluminio hasta la modificación de la estructura principal de las alas, las costillas del fuselaje, las superficies de control y otras tareas de apoyo a las misiones.
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, observa cómo una máquina de madera corta agujeros para las tablas del piso temporal el 26 de agosto de 2024. El piso fue diseñado para el avión de demostración experimental X-66. NASA/Steve Freeman Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 3 weeks ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 4 months ago 10 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 4 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice Read this story in English here.
      El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año. 
      “El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.” 
      El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave. 
      “Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.” 
      El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo. 
      “El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.” 
      Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes. 
      “Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.” 
      Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...