Jump to content

Astronomers Find Spark of Star Birth Across Billions of Years


Recommended Posts

  • Publishers
Posted
This release includes composite images of four galaxy clusters, presented in a two-by-two grid. Each image features a hazy, purple cloud representing X-rays from hot gas observed by Chandra. The distant galaxies in and around the clouds of hot gas have been captured in optical data, and are shown in golden yellows with hints of vibrant cyan blue.
These images represent a sample of galaxy clusters that are part of the largest and most complete study to learn what triggers stars to form in the universe’s biggest galaxies. Clusters of galaxies are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. This research, made using Chandra and other telescopes, showed that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years. In these images, X-rays from Chandra are shown along with optical data from Hubble.
X-ray: NASA/CXC/MIT/M. Calzadilla el al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/N. Wolk & J. Major

These four images represent a sample of galaxy clusters that are part of the largest and most complete study to learn what triggers stars to form in the universe’s biggest galaxies, as described in our latest press release. This research, made using NASA’s Chandra X-ray Observatory and other telescopes, showed that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years.

Galaxy clusters are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. This hot gas weighs several times the total mass of all the stars in all the hundreds of galaxies typically found in galaxy clusters. In the four galaxy cluster images in this graphic, X-rays from hot gas detected by Chandra are in purple and optical data from NASA’s Hubble Space Telescope, mostly showing galaxies in the clusters, are yellow and cyan.

In this study, researchers looked at the brightest and most massive class of galaxies in the universe, called brightest cluster galaxies (BCGs), in the centers of 95 clusters of galaxies. The galaxy clusters chosen are themselves an extreme sample — the most massive clusters in a large survey using the South Pole Telescope (SPT), with funding support from the National Science Foundation and Department of Energy — and are located between 3.4 and 9.9 billion light-years from Earth.

The four galaxy clusters shown here at located at distances of 3.9 billion (SPT-CLJ0106-5943), 5.6 billion (SPT-CLJ0307-6225), 6.4 billion (SPT-CLJ0310-4647) and 7.7 billion (SPT-CLJ0615-5746) light-years from Earth, and the images are 1.7 million, 2 million, 2.4 million and 2.2 million light-years across, respectively. By comparison our galaxy is only about 100,000 light-years across.

In SPT-CLJ0307-6225 the BCG is near the bottom right of the image and in the other images they are near the centers. Some of the long, narrow features are caused by gravitational lensing, where mass in the clusters is warping the light from galaxies behind the clusters. The images have been rotated from standard astronomer’s configuration of North up by 20 degrees clockwise (SPT-CLJ0106-5943), 6.2 degrees counterclockwise (SPT-CLJ0307-6225), 29,2 degrees counterclockwise (SPT-CLJ0310-4647) and 24.2 degrees clockwise (SPT-CLJ0615-5746).

The team found that the precise trigger for stars to form in the galaxies that they studied is when the amount of disordered motion in the hot gas — a physical concept called “entropy” — falls below a critical threshold. Below this threshold, the hot gas inevitably cools to form new stars.

In addition to the X-ray data from Chandra X-ray Observatory and radio data from the SPT already mentioned, this result also used radio data from the Australia Telescope Compact Array, and the Australian SKA Pathfinder Telescope, infrared data from NASA’s WISE satellite, and several optical telescopes. The optical telescopes used in this study were the Magellan 6.5-m Telescopes, the Gemini South Telescope, the Blanco 4-m Telescope (DECam, MOSAIC-II) and the Swope 1m Telescope. A total of almost 50 days of Chandra observing time was used for this result.

Michael Caldazilla of the Massachusetts Institute of Technology (MIT) presented these results at the 243rd meeting of the American Astronomical Society in New Orleans, LA. In addition, there is a paper submitted to The Astrophysical Journal led by Caldazilla on this result (preprint here). The other authors on the paper are Michael McDonald (MIT), Bradford Benson (University of Chicago), Lindsay Bleem (Argonne National Laboratory), Judith Croston (The Open University, UK), Megan Donahue (Michigan State University), Alastair Edge (University of Durham, UK), Gordon Garmire (Penn State University), Julie Hvalacek-Larrondo (University of Colorado), Minh Huynh (CSIRO, Australia), Gourav Khullar (University of Pittsburgh), Ralph Kraft (Center for Astrophysics | Harvard & Smithsonian), Brian McNamara (University of Waterloo, Canada), Allison Noble (Arizona State University), Charles Romero (CfA), Florian Ruppin (University of Lyon, France), Taweewat Somboonpanyakul (Stanford University), and Mark Voit (Michigan State).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description

This release includes composite images of four galaxy clusters, presented in a two-by-two grid. Each image features a hazy, purple cloud representing X-rays from hot gas observed by Chandra. The distant galaxies in and around the clouds of hot gas have been captured in optical data, and are shown in golden yellows with hints of vibrant cyan blue.

The galaxy cluster at our upper left is labeled SPT-CLJ0310-4647. Here, the blackness of space is packed with gleaming specks of white, golden yellow, and bright blue light. These are individual galaxies. Some of the galaxies resemble blurred, glowing dots. In other galaxies, the curving arms of a spiral formation are discernible. At the center of the image, a faint purple cloud surrounds several of the cluster’s brightest galaxies.

At our upper right is an image of SPT-CLJ0615-5746. This is the most distant cluster of the four so the galaxies it contains appear relatively small. These galaxies are mostly located near the center of the image. The purple cloud of hot gas is roughly spherical, and has a light purple spot at its core.

At our lower right is SPT-CLJ0307-6225. Here, X-rays from hot gas are represented by a large, misty, purple cloud that covers much of the image. The brightest spot in the cloud is a light purple dot near our lower right. The most notable galaxy in this image is a pixilated spiral galaxy above and to our left of center.

The galaxy cluster at our lower left is labeled SPT-CLJ0106-5943. This cluster features a scattering of cyan blue galaxies, several of which appear stretched or elongated due to gravitational lensing. At the center of the image is a purple gas cloud with a bright white speck at its core.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation Eclipses, Auroras, and the… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora dances across the sky in a display of ethereal beauty, nine undergraduate students from across the United States were about to embark on a transformative journey. These students had been active ‘NASA Partner Eclipse Ambassadors’ in their home communities, nine of more than 700 volunteers who shared the science and awe of the 2024 eclipse with hundreds of thousands of people across the country as part of the NASA Science Activation program’s Eclipse Ambassadors project. Now, these nine were chosen to participate in a once-in a lifetime experience as a part of the “Eclipses to Aurora” Winter Field School at the University of Alaska Fairbanks. Organized by the Astronomical Society of the Pacific and NASA’s Aurorasaurus Citizen Science project, supported by NASA, this program offered more than just lectures—it was an immersive experience into the wonders of heliophysics and the profound connections between the Sun and Earth.
      From January 4 to 11, 2025, the students explored the science behind the aurora through seminars on solar and space physics, hands-on experiments, and tours of cutting-edge research facilities like the Poker Flat Research Range. They also gained invaluable insight from Athabaskan elders, who shared local stories and star knowledge passed down through generations. As Feras recalled, “We attended multiple panels on solar and space physics, spoke to local elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      For many students, witnessing the aurora was not only a scientific milestone, but a deeply personal and emotional experience. One participant, Andrea, described it vividly: “I looked to the darkest horizon I could find to see my only constant dream fulfilled before my eyes, so slowly dancing and bending to cradle the stars. All I could do, with my hands frozen and tears falling, I began to dream again with my eyes wide open.” Another student, Kalid, reflected on the shared human moment: “Standing there under the vast Alaskan sky… we were all just people, looking up, waiting for something magical. The auroras didn’t care about our majors or our knowledge—they brought us together under the same sky.”
      These moments of wonder were mirrored by a deeper sense of purpose and transformation. “Over the course of the week, I had the incredible opportunity to explore auroras through lectures on solar physics, planetary auroras, and Indigenous star knowledge… and to reflect on these experiences through essays and presentations,” said Sophia. The Winter Field School was more than an academic endeavor—it was a celebration of science, culture, and shared human experience. It fostered not only understanding but unity and awe, reminding everyone involved of the profound interconnectedness of our universe.
      The impact of the program continues to resonate. For many students, that one aurora-lit week in Alaska became a turning point in the focus of their careers. Sophia has since been accepted into graduate school to pursue heliophysics. Vishvi, inspired by the intersection of science and society, will begin a program in medical physics at the University of Pennsylvania this fall. And Christy, moved by her time at the epicenter of aurora research, has applied to the Ph.D. program in Space Physics at the University of Alaska Fairbanks—the very institution that helped spark her journey. Their stories are powerful proof that the Winter Field School didn’t just teach—it awakened purpose, lit new paths, and left footprints on futures still unfolding.
      Eclipse Ambassadors is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Participants at the Winter Field School are enjoying the trip to Anchorage, AK. Andy Witteman Share








      Details
      Last Updated May 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Auroras Eclipses Opportunities For Students to Get Involved Explore More
      4 min read Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning


      Article


      1 day ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      5 days ago
      6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By Amazing Space
      What Is That Strange Dot Moving Across The Sun?
    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      4 min read
      May’s Night Sky Notes: How Do We Find Exoplanets?
      Astronomers have been trying to discover evidence that worlds exist around stars other than our Sun since the 19th century. By the mid-1990s, technology finally caught up with the desire for discovery and led to the first discovery of a planet orbiting another sun-like star, Pegasi 51b. Why did it take so long to discover these distant worlds, and what techniques do astronomers use to find them?
      The Transit Method
      A planet passing in front of its parent star creates a drop in the star’s apparent brightness, called a transit. Exoplanet Watch participants can look for transits in data from ground-based telescopes, helping scientists refine measurements of the length of a planet’s orbit around its star. Credit: NASA’s Ames Research Center One of the most famous exoplanet detection methods is the transit method, used by Kepler and other observatories. When a planet crosses in front of its host star, the light from the star dips slightly in brightness. Scientists can confirm a planet orbits its host star by repeatedly detecting these incredibly tiny dips in brightness using sensitive instruments. If you can imagine trying to detect the dip in light from a massive searchlight when an ant crosses in front of it, at a distance of tens of miles away, you can begin to see how difficult it can be to spot a planet from light-years away! Another drawback to the transit method is that the distant solar system must be at a favorable angle to our point of view here on Earth – if the distant system’s angle is just slightly askew, there will be no transits. Even in our solar system, a transit is very rare. For example, there were two transits of Venus visible across our Sun from Earth in this century. But the next time Venus transits the Sun as seen from Earth will be in the year 2117 – more than a century from the 2012 transit, even though Venus will have completed nearly 150 orbits around the Sun by then!
      The Wobble Method
      As a planet orbits a star, the star wobbles. This causes a change in the appearance of the star’s spectrum called Doppler shift. Because the change in wavelength is directly related to relative speed, astronomers can use Doppler shift to calculate exactly how fast an object is moving toward or away from us. Astronomers can also track the Doppler shift of a star over time to estimate the mass of the planet orbiting it. NASA, ESA, CSA, Leah Hustak (STScI) Spotting the Doppler shift of a star’s spectra was used to find Pegasi 51b, the first planet detected around a Sun-like star. This technique is called the radial velocity or “wobble” method. Astronomers split up the visible light emitted by a star into a rainbow. These spectra, and gaps between the normally smooth bands of light, help determine the elements that make up the star. However, if there is a planet orbiting the star, it causes the star to wobble ever so slightly back and forth. This will, in turn, cause the lines within the spectra to shift ever so slightly towards the blue and red ends of the spectrum as the star wobbles slightly away and towards us. This is caused by the blue and red shifts of the star’s light. By carefully measuring the amount of shift in the star’s spectra, astronomers can determine the size of the object pulling on the host star and if the companion is indeed a planet. By tracking the variation in this periodic shift of the spectra, they can also determine the time it takes the planet to orbit its parent star.
      Direct Imaging
      Finally, exoplanets can be revealed by directly imaging them, such as this image of four planets found orbiting the star HR 8799! Space telescopes use instruments called coronagraphs to block the bright light from the host star and capture the dim light from planets. The Hubble Space Telescope has captured images of giant planets orbiting a few nearby systems, and the James Webb Space Telescope has only improved on these observations by uncovering more details, such as the colors and spectra of exoplanet atmospheres, temperatures, detecting potential exomoons, and even scanning atmospheres for potential biosignatures!
      NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) You can find more information and activities on NASA’s Exoplanets page, such as the Eyes on Exoplanets browser-based program, The Exoplaneteers, and some of the latest exoplanet news. Lastly, you can find more resources in our News & Resources section, including a clever demo on how astronomers use the wobble method to detect planets! 
      The future of exoplanet discovery is only just beginning, promising rich rewards in humanity’s understanding of our place in the Universe, where we are from, and if there is life elsewhere in our cosmos.
      Originally posted by Dave Prosper: July 2015
      Last Updated by Kat Troche: April 2025
      View the full article
  • Check out these Videos

×
×
  • Create New...