Jump to content

Astronomers Find Spark of Star Birth Across Billions of Years


NASA

Recommended Posts

  • Publishers
This release includes composite images of four galaxy clusters, presented in a two-by-two grid. Each image features a hazy, purple cloud representing X-rays from hot gas observed by Chandra. The distant galaxies in and around the clouds of hot gas have been captured in optical data, and are shown in golden yellows with hints of vibrant cyan blue.
These images represent a sample of galaxy clusters that are part of the largest and most complete study to learn what triggers stars to form in the universe’s biggest galaxies. Clusters of galaxies are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. This research, made using Chandra and other telescopes, showed that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years. In these images, X-rays from Chandra are shown along with optical data from Hubble.
X-ray: NASA/CXC/MIT/M. Calzadilla el al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/N. Wolk & J. Major

These four images represent a sample of galaxy clusters that are part of the largest and most complete study to learn what triggers stars to form in the universe’s biggest galaxies, as described in our latest press release. This research, made using NASA’s Chandra X-ray Observatory and other telescopes, showed that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years.

Galaxy clusters are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. This hot gas weighs several times the total mass of all the stars in all the hundreds of galaxies typically found in galaxy clusters. In the four galaxy cluster images in this graphic, X-rays from hot gas detected by Chandra are in purple and optical data from NASA’s Hubble Space Telescope, mostly showing galaxies in the clusters, are yellow and cyan.

In this study, researchers looked at the brightest and most massive class of galaxies in the universe, called brightest cluster galaxies (BCGs), in the centers of 95 clusters of galaxies. The galaxy clusters chosen are themselves an extreme sample — the most massive clusters in a large survey using the South Pole Telescope (SPT), with funding support from the National Science Foundation and Department of Energy — and are located between 3.4 and 9.9 billion light-years from Earth.

The four galaxy clusters shown here at located at distances of 3.9 billion (SPT-CLJ0106-5943), 5.6 billion (SPT-CLJ0307-6225), 6.4 billion (SPT-CLJ0310-4647) and 7.7 billion (SPT-CLJ0615-5746) light-years from Earth, and the images are 1.7 million, 2 million, 2.4 million and 2.2 million light-years across, respectively. By comparison our galaxy is only about 100,000 light-years across.

In SPT-CLJ0307-6225 the BCG is near the bottom right of the image and in the other images they are near the centers. Some of the long, narrow features are caused by gravitational lensing, where mass in the clusters is warping the light from galaxies behind the clusters. The images have been rotated from standard astronomer’s configuration of North up by 20 degrees clockwise (SPT-CLJ0106-5943), 6.2 degrees counterclockwise (SPT-CLJ0307-6225), 29,2 degrees counterclockwise (SPT-CLJ0310-4647) and 24.2 degrees clockwise (SPT-CLJ0615-5746).

The team found that the precise trigger for stars to form in the galaxies that they studied is when the amount of disordered motion in the hot gas — a physical concept called “entropy” — falls below a critical threshold. Below this threshold, the hot gas inevitably cools to form new stars.

In addition to the X-ray data from Chandra X-ray Observatory and radio data from the SPT already mentioned, this result also used radio data from the Australia Telescope Compact Array, and the Australian SKA Pathfinder Telescope, infrared data from NASA’s WISE satellite, and several optical telescopes. The optical telescopes used in this study were the Magellan 6.5-m Telescopes, the Gemini South Telescope, the Blanco 4-m Telescope (DECam, MOSAIC-II) and the Swope 1m Telescope. A total of almost 50 days of Chandra observing time was used for this result.

Michael Caldazilla of the Massachusetts Institute of Technology (MIT) presented these results at the 243rd meeting of the American Astronomical Society in New Orleans, LA. In addition, there is a paper submitted to The Astrophysical Journal led by Caldazilla on this result (preprint here). The other authors on the paper are Michael McDonald (MIT), Bradford Benson (University of Chicago), Lindsay Bleem (Argonne National Laboratory), Judith Croston (The Open University, UK), Megan Donahue (Michigan State University), Alastair Edge (University of Durham, UK), Gordon Garmire (Penn State University), Julie Hvalacek-Larrondo (University of Colorado), Minh Huynh (CSIRO, Australia), Gourav Khullar (University of Pittsburgh), Ralph Kraft (Center for Astrophysics | Harvard & Smithsonian), Brian McNamara (University of Waterloo, Canada), Allison Noble (Arizona State University), Charles Romero (CfA), Florian Ruppin (University of Lyon, France), Taweewat Somboonpanyakul (Stanford University), and Mark Voit (Michigan State).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description

This release includes composite images of four galaxy clusters, presented in a two-by-two grid. Each image features a hazy, purple cloud representing X-rays from hot gas observed by Chandra. The distant galaxies in and around the clouds of hot gas have been captured in optical data, and are shown in golden yellows with hints of vibrant cyan blue.

The galaxy cluster at our upper left is labeled SPT-CLJ0310-4647. Here, the blackness of space is packed with gleaming specks of white, golden yellow, and bright blue light. These are individual galaxies. Some of the galaxies resemble blurred, glowing dots. In other galaxies, the curving arms of a spiral formation are discernible. At the center of the image, a faint purple cloud surrounds several of the cluster’s brightest galaxies.

At our upper right is an image of SPT-CLJ0615-5746. This is the most distant cluster of the four so the galaxies it contains appear relatively small. These galaxies are mostly located near the center of the image. The purple cloud of hot gas is roughly spherical, and has a light purple spot at its core.

At our lower right is SPT-CLJ0307-6225. Here, X-rays from hot gas are represented by a large, misty, purple cloud that covers much of the image. The brightest spot in the cloud is a light purple dot near our lower right. The most notable galaxy in this image is a pixilated spiral galaxy above and to our left of center.

The galaxy cluster at our lower left is labeled SPT-CLJ0106-5943. This cluster features a scattering of cyan blue galaxies, several of which appear stretched or elongated due to gravitational lensing. At the center of the image is a purple gas cloud with a bright white speck at its core.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover discovered “leopard spots” on a reddish rock nicknamed “Cheyava Falls” in Mars’ Jezero Crater in July 2024. Scientists think the spots may indicate that, billions of years ago, the chemical reactions in this rock could have supported microbial life; other explanations are being considered.NASA/JPL-Caltech/MSSS An annotated version of the image of “Cheyava Falls” indicates the markings akin to leopard spots, which have particularly captivated scientists, and the olivine in the rock. The image was captured by the WATSON instrument on NASA’s Perseverance Mars rover on July 18.NASA/JPL-Caltech/MSSS The six-wheeled geologist found a fascinating rock that has some indications it may have hosted microbial life billions of years ago, but further research is needed.
      A vein-filled rock is catching the eye of the science team of NASA’s Perseverance rover. Nicknamed “Cheyava Falls” by the team, the arrowhead-shaped rock contains fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.
      Analysis by instruments aboard the rover indicates the rock possesses qualities that fit the definition of a possible indicator of ancient life. The rock exhibits chemical signatures and structures that could possibly have been formed by life billions of years ago when the area being explored by the rover contained running water. Other explanations for the observed features are being considered by the science team, and future research steps will be required to determine whether ancient life is a valid explanation.
      The rock — the rover’s 22nd rock core sample — was collected on July 21, as the rover explored the northern edge of Neretva Vallis, an ancient river valley measuring a quarter-mile (400 meters) wide that was carved by water rushing into Jezero Crater long ago.
      “Cheyava Falls” (left) shows the dark hole where NASA’s Perseverance took a core sample; the white patch is where the rover abraded the rock to investigate its composition. A rock nicknamed “Steamboat Mountain” (right) also shows an abrasion patch. This image was taken by Mastcam-Z on July 23.NASA/JPL-Caltech/ASU/MSSS NASA’s Perseverance used its Mastcam-Z instrument to view the “Cheyava Falls” rock sample within the rover’s drill bit. Scientists believe markings on the rock contain fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.NASA/JPL-Caltech/ASU/MSSS “We have designed the route for Perseverance to ensure that it goes to areas with the potential for interesting scientific samples,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “This trip through the Neretva Vallis riverbed paid off as we found something we’ve never seen before, which will give our scientists so much to study.”
      Multiple scans of Cheyava Falls by the rover’s SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instrument indicate it contains organic compounds. While such carbon-based molecules are considered the building blocks of life, they also can be formed by non-biological processes.
      “Cheyava Falls is the most puzzling, complex, and potentially important rock yet investigated by Perseverance,” said Ken Farley,Perseverance project scientist of Caltech in Pasadena. “On the one hand, we have our first compelling detection of organic material, distinctive colorful spots indicative of chemical reactions that microbial life could use as an energy source, and clear evidence that water — necessary for life — once passed through the rock. On the other hand, we have been unable to determine exactly how the rock formed and to what extent nearby rocks may have heated Cheyava Falls and contributed to these features.”
      NASA’s Perseverance rover used its Mastcam-Z instrument to capture this 360-degree panorama of a region on Mars called “Bright Angel,” where an ancient river flowed billions of years ago. “Cheyava Falls” was discovered in the area slightly right of center, about 361 feet (110 meters) from the rover.NASA/JPL-Caltech/ASU/MSSS Other details about the rock, which measures 3.2 feet by 2 feet (1 meter by 0.6 meters) and was named after a Grand Canyon waterfall, have intrigued the team, as well.
      How Rocks Get Their Spots
      In its search for signs of ancient microbial life, the Perseverance mission has focused on rocks that may have been created or modified long ago by the presence of water. That’s why the team homed in on Cheyava Falls.
      “This is the kind of key observation that SHERLOC was built for — to seek organic matter as it is an essential component of a search for past life,” said SHERLOC’s principal investigator Kevin Hand of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission.
      Running the length of the rock are large white calcium sulfate veins. Between those veins are bands of material whose reddish color suggests the presence of hematite, one of the minerals that gives Mars its distinctive rusty hue.
      When Perseverance took a closer look at these red regions, it found dozens of irregularly shaped, millimeter-size off-white splotches, each ringed with black material, akin to leopard spots. Perseverance’s PIXL (Planetary Instrument for X-ray Lithochemistry) instrument has determined these black halos contain both iron and phosphate.
      As shown in this graphic, astrobiologists catalog a seven-step scale, called the CoLD (Confidence of Life Detection) scale, to research whether a sample could indicate life. This “Cheyava Falls” sample is an example of Step One: “Detect possible signal.” Much additional research must be conducted to learn more.NASA/Aaron Gronstal “These spots are a big surprise,” said David Flannery, an astrobiologist and member of the Perseverance science team from the Queensland University of Technology in Australia. “On Earth, these types of features in rocks are often associated with the fossilized record of microbes living in the subsurface.”
      Spotting of this type on sedimentary terrestrial rocks can occur when chemical reactions involving hematite turn the rock from red to white. Those reactions can also release iron and phosphate, possibly causing the black halos to form. Reactions of this type can be an energy source for microbes, explaining the association between such features and microbes in a terrestrial setting.
      In one scenario the Perseverance science team is considering, Cheyava Falls was initially deposited as mud with organic compounds mixed in that eventually cemented into rock. Later, a second episode of fluid flow penetrated fissures in the rock, enabling mineral deposits that created the large white calcium sulfate veins seen today and resulting in the spots.
      Another Puzzle Piece
      While both the organic matter and the leopard spots are of great interest, they aren’t the only aspects of the Cheyava Falls rock confounding the science team. They were surprised to find that these veins are filled with millimeter-size crystals of olivine, a mineral that forms from magma. The olivine might be related to rocks that were formed farther up the rim of the river valley and that may have been produced by crystallization of magma.
      If so, the team has another question to answer: Could the olivine and sulfate have been introduced to the rock at uninhabitably high temperatures, creating an abiotic chemical reaction that resulted in the leopard spots?
      “We have zapped that rock with lasers and X-rays and imaged it literally day and night from just about every angle imaginable,” said Farley. “Scientifically, Perseverance has nothing more to give. To fully understand what really happened in that Martian river valley at Jezero Crater billions of years ago, we’d want to bring the Cheyava Falls sample back to Earth, so it can be studied with the powerful instruments available in laboratories.”
      More Mission Information
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Erin Morton
      Headquarters, Washington
      202-358-1600 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      2024-103
      Share
      Details
      Last Updated Jul 25, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Mars Sample Return (MSR) The Solar System Explore More
      4 min read UPDATED: 10 Things for Mars 10
      Scientists from around the world are gathering this week in California to take stock of…
      Article 2 days ago 6 min read NASA-Funded Studies Explain How Climate Is Changing Earth’s Rotation
      Article 6 days ago 3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      In July 1968, much work still remained to meet the goal President John F. Kennedy set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. No American astronaut had flown in space since the November 1966 flight of Gemini XII, the delay largely a result of the tragic Apollo 1 fire. Although the Apollo spacecraft had successfully completed several uncrewed test flights, the first crewed mission still lay three months in the future. The delays in getting the Lunar Module (LM) ready for its first flight caused schedule concerns, but also presented an opportunity for a bold step to send the second crewed Apollo mission, the first crewed flight of the Saturn V, on a trip to orbit the Moon. Using an incremental approach, three flights later NASA accomplished President Kennedy’s goal.
      Left: The charred remains of the Apollo 1 spacecraft following the tragic fire that claimed the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. Middle left: The first launch of the Saturn V rocket on the Apollo 4 mission. Middle right: The first Lunar Module in preparation for the Apollo 5 mission. Right: Splashdown of Apollo 6, the final uncrewed Apollo mission.
      The American human spaceflight program suffered a jarring setback on Jan. 27, 1967, with the deaths of astronauts Virgil I. Grissom, Edward H. White, and Roger B. Chaffee in the Apollo 1 fire. The fire and subsequent Investigation led to wholesale changes to the spacecraft, such as the use of fireproof materials and redesign of the hatch to make it easy to open. The early Block I spacecraft, such as Apollo 1, would now only be used for uncrewed missions, with crews flying only aboard the more advanced Block II spacecraft. The fire and its aftermath also led to management changes. For example, George M. Low replaced Joseph F. Shea as Apollo Spacecraft Program Manager. The first Apollo mission after the fire, the uncrewed Apollo 4 in November 1967, included the first launch of the Saturn V Moon rocket as well as a 9-hour flight of a Block I Command and Service Module (CSM). Apollo 5 in January 1968 conducted the first uncrewed test of the LM, and despite a few anomalies, managers considered it successful enough that they canceled a second uncrewed flight. The April 1968 flight of Apollo 6, planned as a near-repeat of Apollo 4, encountered several significant anomalies such as first stage POGO, or severe vibrations, and the failure of the third stage to restart, leading to an alternate mission scenario. Engineers devised a solution to the POGO problem and managers decided that the third flight of the Saturn V would carry a crew.
      Left: Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra participate in water egress training. Middle: Workers stack the Apollo 7 spacecraft on its Saturn IB rocket at Launch Pad 34. Right: Schirra, left, Cunningham, and Eisele stand outside the spacecraft simulator.
      As of July 1968, NASA’s plan called for two crewed Apollo flights in 1968 and up to five in 1969 to achieve the first lunar landing to meet President Kennedy’s deadline, with each mission incrementally building on the success of the previous ones. The first mission, Apollo 7, would return American astronauts to space following a 23-month hiatus. Planned for October 1968, the crew of Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham would launch atop a Saturn IB rocket and conduct a shakedown flight of the Block II CSM in Earth orbit, including testing the Service Propulsion System engine, critical on later lunar missions for getting into and out of lunar orbit. The flight plan remained open-ended, but managers expected to complete a full-duration 11-day mission, ending with a splashdown in the Atlantic Ocean. Preparations for Apollo 7 proceeded well during the summer of 1968. Workers had stacked the two-stage Saturn IB rocket on Launch Pad 34 back in April. In KSC’s Manned Spacecraft Operations Building (MSOB), Schirra, Eisele, and Cunningham completed altitude chamber tests of their spacecraft, CSM-101, on July 26 followed by their backups three days later. Workers trucked the spacecraft to the launch pad on Aug. 9 for mating with the rocket. Among major milestones, Schirra, Eisele, and Cunningham completed water egress training in the Gulf of Mexico on Aug. 5, in addition to spending time in the spacecraft simulators at KSC and at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston.
      Left: The original Apollo 8 crew of Russell L. Schweickart, left, David R. Scott, and James A. McDivitt during training in June 1968. Middle: Lunar Module-3 arrives at NASA’s Kennedy Space Center (KSC) in Florida in June 1968. Right: In July 1968, workers in KSC’s Vehicle Assembly Building stack the Saturn V rocket for the Apollo 8 mission.
      The second flight, targeting a December 1968 launch, would feature the first crewed launch of the Saturn V rocket. The Apollo 8 crew of James A. McDivitt, David R. Scott, and Russell L. Schweickart would conduct the first crewed test of the LM in the relative safety of low Earth orbit. McDivitt and Schweickart would fly the LM on its independent mission, including separating the ascent stage from the descent stage to simulate a takeoff from the Moon, while Scott remained in the CSM. After redocking, Schweickart would conduct a spacewalk to practice an external transfer between the two vehicles. Workers completed stacking the three-stage Saturn V rocket (SA-503) in KSC’s Vehicle Assembly Building (VAB) on Aug. 14. The first component of the spacecraft, LM-3, arrived at KSC on June 9, while CSM-103, arrived on Aug. 12. Workers in the MSOB began to prepare both spacecraft for flight.
      Left: The original Apollo 9 crew of William A. Anders, left, Michael Collins, and Frank Borman during training in March 1968. Middle: Lunar Module-3 during preflight processing at NASA’s Kennedy Space Center (KSC) in Florida in August 1968. Right: Following the revision of the mission plans for Apollo 8 and 9 and crew changes, the Apollo 8 crew of James A. Lovell, Anders, and Borman stand before their Saturn V rocket as it rolls out of KSC’s Vehicle Assembly Building in October 1968.
      The third flight, planned for early 1969, and flown by Frank Borman, Michael Collins, and William A. Anders, would essentially repeat the Apollo 8 mission, but at the end would fire the SPS engine to raise the high point of their orbit to 4,600 miles and then simulate a reentry at lunar return velocity to test the spacecraft’s heat shield. On July 23, Collins underwent surgery for a bone spur in his neck, and on August 8, NASA announced that James A. Lovell from the backup crew would take his place. Later missions in 1969 would progress to sending the CSM and LM combination to lunar orbit, leading to the first landing before the end of the year. Construction of the rocket and spacecraft components for these future missions continued at various contractor facilities around the country.
      Left: In Mission Control during the Apollo 6 mission, Director of Flight Crew Operations Christopher C. Kraft, left, Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Robert R. Gilruth, and Apollo Spacecraft Program Manager George M. Low. Middle left: Chief of Flight Crew Operations Donald K. “Deke” Slayton. Middle right: Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus. Right: Director of NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Challenges to this plan began to arise in June 1968. Managers’ biggest concern centered around the readiness of LM-3. After its delivery to KSC on June 9, managers realized the vehicle needed much more work than anticipated and it would not meet the planned December Apollo 8 launch date. Best estimates put its flight readiness no earlier than February 1969. That kind of delay would jeopardize meeting President Kennedy’s fast-approaching deadline. To complicate matters, intelligence reports indicated that the Soviets were close to sending cosmonauts on a trip around the Moon, possibly before the end of the year, and also preparing to test a Saturn V-class rocket for a Moon landing mission.
      Apollo Spacecraft Program Manager Low formulated a plan both audacious and risky. Without a LM, an Earth orbital Apollo 8 mission would simply repeat Apollo 7’s and not advance the program very much. By sending the CSM on a mission around the Moon, or even to orbit the Moon, NASA would gain valuable experience in navigation and communications at lunar distances. To seek management support for his plan, on Aug. 9 Low met with MSC Director Robert R. Gilruth, who supported the proposal. They called in Christopher C. Kraft, director of flight operations, for his opinion. Two days earlier, Low had asked Kraft to assess the feasibility of a lunar orbit mission for Apollo 8, and Kraft deemed it achievable from a ground control and spacecraft computer standpoint. Chief of Flight Crew Operations Donald K. “Deke” Slayton joined the discussion, and all agreed to seek support for the plan from the directors of KSC and of NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama, as well as NASA Headquarters (HQ) in Washington, D.C. That afternoon, the four flew to Huntsville and met with MSFC Director Wernher von Braun, KSC Director Kurt H. Debus, and HQ Apollo Program Director Samuel C. Phillips. By the end of the meeting, the group identified no insurmountable technical obstacles to the lunar mission plan, with the qualification that the Apollo 7 mission in October concluded successfully. Von Braun had confidence that the Saturn V would perform safely, and Debus believed KSC could support a December launch.
      Slayton called Borman, who was with Lovell and Anders conducting tests with their spacecraft in Downey, California. He ordered Borman to immediately fly to Houston, where he offered him command of the new circumlunar Apollo 8 mission, which Borman accepted. His crew would swap missions with McDivitt’s, who agreed to fly an Earth orbital test of the LM in February 1969, putting that crew’s greater experience with the LM to good use. The training challenge fell on Borman’s crew, who now had just four months to train for a flight around the Moon.
      Left: Apollo Program Director Samuel C. Phillips. Middle left: Associate Administrator for Manned Space Flight George E. Mueller. Middle right: Deputy Administrator Thomas O. Paine. Right: Administrator James E. Webb.
      On Aug. 14, representatives from MSC, MSFC, and KSC attended a meeting in Washington with NASA Deputy Administrator Thomas O. Paine and Apollo Program Director Phillips, the senior Headquarters officials present as NASA Administrator James E. Webb and Associate Administrator for Manned Space Flight George E. Mueller attended a conference in Vienna. The group discussed Low’s proposal and agreed on the technical feasibility of accomplishing a circumlunar flight with Apollo 8 in December. During the discussion, Mueller happened to call from Vienna and when they presented him with the proposal, he was at first reticent, especially since NASA had yet to fly Apollo 7. He requested more information and more time to consider the proposal so he could properly brief Webb. Paine then polled each center director for his overall assessment. Von Braun, who designed the Saturn V rocket, stated that whether it went to the Moon or stayed in Earth orbit didn’t matter too much. Debus stated that KSC could support a Saturn V launch in December – as noted above, his team was already processing both the rocket and the spacecraft. Gilruth agreed that the proposal represented a key step in achieving President Kennedy’s goal, and emphasized that the mission should not just loop around the Moon but actually enter orbit. Following additional discussions after Webb’s return from Vienna, he agreed to the plan, but would not make a formal decision until after a successful Apollo 7 flight in October. NASA kept the lunar orbit plan quiet even as the crews began training for their respective new missions. An announcement on Aug. 19 merely stated that Apollo 8 would not carry a LM, as the agency continued to assess various mission objectives. Ultimately, the plan required President Lyndon B. Johnson’s approval.
      Left: Astronaut Neil A. Armstrong ejects just moments before his Lunar Landing Research Vehicle crashed. Middle left: Pilot Gerald P. Gibbons, left, and astronaut James B. Irwin prepare to enter an altitude chamber for one of the Lunar Module Test Article-8 (LTA-8) vacuum tests. Middle right: Astronauts Joe H. Engle, left, Vance D. Brand, and Joseph P. Kerwin preparing for the 2TV-1 altitude test. Right: One of the final Apollo parachute tests.
      As those discussions took place, work around the country continued to prepare for the first lunar landing, not without some setbacks. On May 8, astronaut Neil A. Armstrongejected just in the nick of time as the Lunar Landing Research Vehicle (LLRV) he was piloting went out of control and crashed. Managers suspended flights of the LLRV and its successor, the Lunar Landing Training Vehicle (LLTV), until Oct. 3. Astronauts used the LLRV and LLTV to train for the final few hundred feet of the descent to the Moon’s surface. On May 27, astronaut James B. Irwin and pilot Gerald P. Gibbons began a series of altitude tests in Chamber B of the Space Environment Simulation Laboratory (SESL) at MSC. The tests, using the LM Test Article-8 (LTA-8), evaluated the pressure integrity of the LM as well as the new spacesuits designed for the Apollo program. The first series of LTA-8 tests supported the Earth-orbital flight of LM-3 on Apollo 9 while a second series in October and November supported the LM-5 flight of Apollo 11, the first lunar landing mission. In June, using SESL’s Chamber A, astronauts Joseph P. Kerwin, Vance D. Brand, and Joe H. Engle completed an eight-day thermal vacuum test using the Apollo 2TV-1 spacecraft to certify the vehicle for Apollo 7. A second test in September certified the vehicle for lunar missions. July 3 marked the final qualification drop test of the Apollo parachute system, a series begun five years earlier. The tests qualified the parachutes for Apollo 7.
      History records that Apollo 11 accomplished the first human landing on the Moon in July 1969. It is remarkable to think that just one year earlier, with the agency still recovering from the Apollo 1 fire, NASA had not yet flown any astronauts aboard an Apollo spacecraft. And further, the agency took the bold step to plan for a lunar orbital mission on just the second crewed mission. With a cadence of a crewed Apollo flight every two months between October 1968 and July 1969, NASA accomplished President Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth.
      John Uri
      NASA Johnson Space Center
      View the full article
    • By NASA
      On July 23, 1999, space shuttle Columbia took to the skies on its 26th trip into space, to deliver its heaviest payload ever – the Chandra X-ray Observatory. The STS-93 crew included Commander Eileen M. Collins, the first woman to command a space shuttle mission, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine “Cady” G. Coleman, Steven A. Hawley, and Michel A. Tognini of the French Space Agency (CNES). On the mission’s first day, they deployed Chandra, the most powerful X-ray telescope. With a planned five-year lifetime, Chandra continues its observations after a quarter century. For the next four days, the astronauts worked on twenty secondary middeck payloads and conducted Earth observations. The successful five-day mission ended with a night landing.

      Left: The STS-93 crew patch. Middle: Official photo of the STS-93 crew of Eileen M. Collins, left, Steven A. Hawley, Jeffrey S. Ashby, Michel A. Tognini of France, and Catherine “Cady” G. Coleman. Right: The patch for the Chandra X-ray Observatory.
      Tognini, selected by CNES in 1985 and a member of NASA’s class of 1995, received the first assignment to STS-93 in November 1997. He previously flew aboard Mir as a cosmonaut researcher, spending 14 days aboard the station in 1992. On March 5, 1998, First Lady Hilary R. Clinton announced Collins’ assignment as the first woman space shuttle commander in a ceremony at the White House together with President William J. “Bill” Clinton. NASA announced the rest of the crew the same day. For Collins, selected in the class of 1990, STS-93 represented her third space mission, having previously served as pilot on STS-63 and STS-84. Ashby, a member of the class of 1994, made his first flight aboard STS-93, while Coleman, selected in 1992, made her second flight, having flown before on STS-73. Hawley made his fifth flight, having previously served as a mission specialist on STS-41D, STS-61C, STS-31, and STS-82. He has the distinction of making the last flight by any member of his class of 1978, more than 21 years after his selection.

      Left: Schematic of the Chandra X-ray Observatory showing its major components. Right: Diagram of the trajectory Chandra took to achieve its final operational 64-hour orbit around the Earth – IUS refers to the two burns of the Inertial Upper Stage and IPS to the five burns of Chandra’s Integral Propulsion System.
      Because the Earth’s atmosphere absorbs X-ray radiation emitted by cosmic sources, scientists first came up with the idea of a space-based X-ray telescope in the 1970s. NASA launched its first X-ray telescope called Einstein in 1978, but scientists needed a more powerful instrument, and they proposed the Advanced X-ray Astrophysics Facility (AXAF). After a major redesign of the telescope in 1992, in 1998 NASA renamed AXAF the Chandra X-ray Observatory after Indian American Nobel Prize-winning theoretical physicist Subrahmanyan Chandrasekhar who made significant contributions to our knowledge about stars, stellar evolution, and black holes. Chandra, the third of NASA’s four Great Observatories, can detect X-ray sources 100 times fainter than any previous X-ray telescope. At 50,162 pounds including the Inertial Upper Stage (IUS) it used to achieve its operational orbit, Chandra remains the heaviest payload ever launched by the space shuttle, and at 57 feet long, it took up nearly the entire length of the payload bay. It has far exceeded its expected five-year lifetime, still returning valuable science after 25 years.

      Left: The STS-93 crew during the Terminal Countdown Demonstration Test. Middle: The Chandra X-ray Observatory loaded into Columbia’s payload bay. Right: Liftoff of Columbia on the STS-93 mission carrying the Chandra X-ray Observatory and the first woman shuttle commander.
      Columbia returned to KSC following its previous flight, the STS-90 Neurolab mission, in May 1998. Workers in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter and removed the previous payload. With all four orbiters at KSC at the same time, workers temporarily stowed Columbia in the Vehicle Assembly Building (VAB), returning it to the OPF for final preflight processing on April 15, 1999. Rollover of Columbia from the OPF to the VAB took place on June 2, where workers mated it with an external tank and two solid rocket boosters. Following integrated testing, the stack rolled out to Launch Pad 39B on June 7. The crew participated in the Terminal Countdown Demonstration Test on June 24. Workers placed Chandra in Columbia’s payload bay three days later.
      On July 23, 1994, Columbia thundered into the night sky from KSC’s Launch Pad 39B to begin the STS-93 mission. Two previous launch attempts on July 20 and 22 resulted in scrubs due to a faulty sensor and bad weather, respectively. As Columbia rose into the sky, for the first time in shuttle history a woman sat in the commander’s seat. Far below, problems arose that could have led to a catastrophic abort scenario. During the engine ignition sequence, a gold pin in Columbia’s right engine came loose, ejected with great force by the rapid flow of hot gases, and struck the engine’s nozzle, punching holes in three of its hydrogen cooling tubes. Although small, the hydrogen leak caused the engine’s controller to increase the flow of oxidizer, making the engine run hotter than normal. Meanwhile, a short-circuit knocked out the center engine’s digital control unit (DCU) and the right engine’s backup DCU. Both engines continued powered flight without a redundant DCU, with a failure in either causing a catastrophic abort. Although this did not occur, the higher than expected oxidizer usage led to main engine cutoff occurring 1.5 seconds early, leaving Columbia in a lower than planned orbit. The shuttle’s Orbiter Maneuvering System engines made up for the deficit. The harrowing events of the powered flight prompted Ascent Flight Director John P. Shannon to comment, “Yikes! We don’t need any more of these.”

      Left: Eileen M. Collins, the first woman shuttle commander, shortly after reaching orbit. Right: First time space flyer STS-93 Pilot Jeffrey S. Ashby, shortly after reaching space.
      After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts prepared for the mission’s primary objective, deployment of Chandra, and also began activating some of the middeck experiments.

      Left: The Chandra X-ray Observatory in Columbia’s payload bay shortly after reaching orbit. Middle: Chandra raised to the deployment angle. Right: Chandra departs Columbia.
      Coleman had prime responsibility for deploying Chandra. After initial checkout of the telescope by ground teams, the astronauts tilted Chandra and the IUS to an angle of 29 degrees. After additional checks, they tilted it up to the release angle of 58 degrees. A little over seven hours after launch, Coleman deployed the Chandra/IUS stack. Collins and Ashby flew Columbia to a safe distance, and about an hour after deployment, the IUS fired its first stage engine for about two minutes, followed by a two-minute burn of the second stage. This placed Chandra in a temporary elliptical Earth orbit with a high point of 37,200 miles. After separation of the IUS, Chandra used its own propulsion system over the next 10 days to raise its altitude to 6,214 miles by 86,992 miles, its operational orbit, circling the Earth every 64 hours. For the next four days of the mission, the astronauts operated about 20 middeck experiments, including a technology demonstration of a treadmill vibration isolation system planned for the International Space Station.

      Left: Michel A. Tognini works with the Commercial Generic Bioprocessing Apparatus. Middle: Jeffrey S. Ashby checks the status of the Space Tissue Lab experiment. Right: Catherine G. Coleman harvests plants from the Plant Growth in Microgravity experiment.

      Left: Catherine G. Coleman, left, and Michel A. Tognini pose near the Lightweight Flexible Solar Array Hinge technology demonstration experiment. Middle: Stephen A. Hawley checks the status of the Micro Electromechanical Systems experiment. Right: Tognini places samples of the Biological Research in Canisters experiment into a gaseous nitrogen freezer.

      Left: Eileen M. Collins runs on the Treadmill Vibration Isolation System. Middle: Stephen A. Hawley, left, and Michel A. Tognini operate the Southwest Ultraviolet Imaging System instrument. Right: Inflight photograph of the STS-93 crew.

      A selection of the STS-93 crew Earth observation photographs. Left: Laguna Verde in Chile. Middle left: Sunrise over the Mozambique Channel. Middle right: Darling River and lakes in Australia. Right: The Society Islands of Bora Bora, Tahaa, and Raiatea.

      Left: Eileen M. Collins prepares to bring Columbia home. Middle: Columbia streaks through the skies over NASA’s Johnson Space Center in Houston during reentry. Right: Collins guides Columbia to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.

      Left: Three holes visible in the hydrogen cooling tubes of Columbia’s right main engine, seen after landing. Middle: The STS-93 crew pose in front of Columbia on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: Eileen M. Collins addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-93 crew, as Vice President Albert “Al” A. Gore and other dignitaries listen.
      At the end of five days, the astronauts finished the last of the experiments and prepared for the return to Earth. On July 28, they closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Collins piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing the 12th night landing of the shuttle program. The crew had flown 80 orbits around the Earth in 4 days, 22 hours, and 50 minutes. Columbia wouldn’t fly again until March 2002, the STS-109 Hubble Servicing Mission-3B. A postflight investigation into the cause of the short on ascent that led to two DCUs failing revealed a wire with frayed insulation, likely caused by workers inadvertently stepping on it, that rubbed against a burred screw head that had likely been there since Columbia’s manufacture. The incident resulted in significant changes to ground processes during shuttle inspections and repairs. With regard to the pin ejected during engine ignition that damaged the hydrogen cooling tubes, investigators found that those pins never passed any acceptance testing. Since STS-93 marked the last flight of that generation of main engines, newer engines incorporated a different configuration, requiring no design or other changes.
      Enjoy the crew narrate a video about the STS-93 mission. Read Hawley’s recollections of the STS-93 mission in his oral history with the JSC History Office.
      Explore More
      11 min read 45 Years Ago: Space Shuttle Enterprise Completes Launch Pad Checkout
      Article 9 hours ago 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Article 2 days ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
      Article 1 week ago
      View the full article
    • By NASA
      20 Min Read The Marshall Star for July 24, 2024
      25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      By Rick Smith
      “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future.
      Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos.
      Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.”
      Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since.
      “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.”
      That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts.
      The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing.
      The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period.
      “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988.
      “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.”
      On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope.
      “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.”
      Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment.
      “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways.
      An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago.
      The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said.
      Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.”
      “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.”
      As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next.
      Learn more about the Chandra X-ray Observatory and its mission.
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      NASA Sounding Rocket Launches, Studies Heating of Sun’s Active Regions
      By Wayne Smith
      Investigators at NASA’s Marshall Space Flight Center will use observations from a recently launched sounding rocket mission to provide a clearer image of how and why the Sun’s corona grows so much hotter than the visible surface of Earth’s parent star. The MaGIXS-2 mission – short for the second flight of the Marshall Grazing Incidence X-ray Spectrometer – launched from White Sands Missile Range in New Mexico on July 16.
      The mission’s goal is to determine the heating mechanisms in active regions on the Sun by making critical observations using X-ray spectroscopy.
      NASA’s MaGIXS-2 sounding rocket mission successfully launches from White Sands Missile Range in New Mexico on July 16.United States Navy The Sun’s surface temperature is around 10,000 degrees Fahrenheit – but the corona routinely measures more than 1.8 million degrees, with active regions measuring up to 5 million degrees.
      Amy Winebarger, Marshall heliophysicist and principal investigator for the MaGIXS missions, said studying the X-rays from the Sun sheds light on what’s happening in the solar atmosphere – which, in turn, directly impacts Earth and the entire solar system.
      X-ray spectroscopy provides unique capabilities for answering fundamental questions in solar physics and for potentially predicting the onset of energetic eruptions on the Sun like solar flares or coronal mass ejections. These violent outbursts can interfere with communications satellites and electronic systems, even causing physical drag on satellites as Earth’s atmosphere expands to absorb the added solar energy.
      “Learning more about these solar events and being able to predict them are the kind of things we need to do to better live in this solar system with our Sun,” Winebarger said.
      The NASA team retrieved the payload immediately after the flight and has begun processing datasets.
      “We have these active regions on the Sun, and these areas are very hot, much hotter than even the rest of the corona,” said Patrick Champey, deputy principal investigator at Marshall for the mission. “There’s been a big question – how are these regions heated? We previously determined it could relate to how often energy is released. The X-rays are particularly sensitive to this frequency number, and so we built an instrument to look at the X-ray spectra and disentangle the data.”
      The MaGIXS-2 sounding rocket team stand on the launchpad in White Sands, New Mexico, prior to launch July 16.United States Navy Following a successful July 2021 launch of the first MaGIXS mission, Marshall and its partners refined instrumentation for MaGIXS-2 to provide a broader view for observing the Sun’s X-rays. Marshall engineers developed and fabricated the telescope and spectrometer mirrors, and the camera. The integrated instrument was exhaustively tested in Marshall’s state-of-the-art X-ray & Cryogenic Facility. For MaGIXS-2, the team refined the same mirrors used on the first flight, with a much larger aperture and completed the testing at Marshall’s Stray Light Test Facility.
      A Marshall project from inception, technology developments for MaGIXS include the low-noise CCD camera, high-resolution X-ray optics, calibration methods, and more.
      Winebarger and Champey said MaGIXS many of the team members started their NASA careers with the project, learning to take on lead roles and benefitting from mentorship.
      “I think that’s probably the most critical thing, aside from the technology, for being successful,” Winebarger said. “It’s very rare that you get from concept to flight in a few years. A young engineer can go all the way to flight, come to White Sands to watch it launch, and retrieve it.”
      NASA routinely uses sounding rockets for brief, focused science missions. They’re often smaller, more affordable, and faster to design and build than large-scale satellite missions, Winebarger said. Sounding rockets carry scientific instruments into space along a parabolic trajectory. Their overall time in space is brief, typically five minutes, and at lower vehicle speeds for a well-placed scientific experiment.
      The MaGIXS mission was developed at Marshall in partnership with the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. The Sounding Rockets Program Office, located at NASA Goddard Space Flight Center’s Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations support to NASA and other government agencies. 
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      From 1 Crew to Another: Artemis II Astronauts Meet NASA Barge Crew
      Members of the Artemis II crew met with the crew of NASA’s Pegasus barge prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast.
      NASA astronaut and pilot of the Artemis II mission Victor Glover met the crew July 15. NASA astronaut Reid Wiseman, commander, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, mission specialist, visited the barge July 16 shortly before the flight hardware was loaded onto it.
      Crew members of NASA’s Pegasus barge meet with NASA astronaut Victor Glover at NASA’s Michoud Assembly Facility prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast. From left are Ashley Marlar, Jamie Crews, Nick Owen, Jefferey Whitehead, Scott Ledet, Jason Dickerson, John Campbell, Glover, Farid Sayah, Kelton Hutchinson, Terry Fitzgerald, Bryan Jones, and Joe Robinson.NASA/Brandon Hancock Pegasus is currently transporting the SLS core stage from NASA’s Michoud Assembly Facility to NASA’s Kennedy Space Center, where it will be integrated and prepared for launch. During the Artemis II test flight, the core stage with its four RS-25 engines will provide more than 2 million pounds of thrust to help send the Artemis II crew around the Moon.
      The Pegasus crew and team, from left, includes Kelton Hutchinson, Jeffery Whitehead, Jason Dickerson, Arlan Cochran, John Brunson, NASA astronaut Reid Wiseman, Marc Verhage, Terry Fitzgerald, Scott Ledet, CSA astronaut Jeremy Hansen, Wil Daly, Ashley Marlar, Farid Sayah, Jamie Crews, Joe Robinson, and Nick Owen.NASA/Sam Lott Pegasus, which was previously used to ferry space shuttle tanks, was modified and refurbished to ferry the SLS rocket’s massive core stage. At 212 feet in length and 27.6 feet in diameter, the Moon rocket stage is more than 50 feet longer than the space shuttle external tank.
      › Back to Top
      I am Artemis: John Campbell
      How do you move NASA’s SLS (Space Launch System) rocket’s massive 212-foot-long core stage across the country? You do it with a 300-foot-long barge. However, NASA’s Pegasus barge isn’t just any barge. It’s a vessel with a history, and John Campbell, a logistics engineer for the agency based at NASA’s Marshall Space Flight Center, is one of the few people who get to be a part of its legacy.
      John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA’s Pegasus barge July 15.NASA For Campbell, this journey is more than just a job – it’s a lifelong passion realized. “Ever since I was a boy, I’ve been fascinated by engineering,” he said. “But to be entrusted with managing NASA’s Pegasus barge, transporting history-making hardware for human spaceflight across state lines and waterways – is something I never imagined.”
      NASA has used barges to ferry the large and heavy hardware elements of its rockets since the Apollo Program. Replacing the agency’s Poseidon and Orion barges, Pegasus was originally crafted for the Space Shuttle Program and updated in recent years to help usher in the Artemis Generation and accommodate the mammoth dimensions of the SLS core stage. The barge plays a big role in NASA’s logistical operations, navigating rivers and coastal waters across the Southeast, and has transported key structural test hardware for SLS in recent years.
      Campbell grew up in Muscle Shoals, Alabama. After graduating from the University of Alabama with a degree in mechanical engineering, he ventured south to Panama City, Florida, where he spent a few years with a heating, ventilation, and air conditioning consulting team. Looking for an opportunity to move home, he applied for and landed a contractor position with NASA and soon moved to his current civil service role.
      With 17 years under his belt, Campbell has many fond memories during his time with the agency. One standout moment was witnessing the space shuttle stacked in the Vehicle Assembly Building at NASA’s Kennedy Space Center. But it’s not all about rockets and launch pads for Campbell. When he isn’t in his office making sure Pegasus has everything it needs for its next trip out, he is on the water accompanying important pieces of hardware to their next destinations. With eight trips on Pegasus under his belt, the journey never gets old.
      “There is something peaceful when you look out and it’s just you, the water, one or two other boats, and wildlife,” Campbell said. “On one trip we had a pod of at least 20 dolphins surrounding us. You get to see all kinds of cool wildlife and scenery.”
      From cherishing special moments like this to ensuring the success of each journey, Campbell recognizes the vital role he plays in the agency’s goals to travel back to the Moon and beyond and does not take his responsibility lightly.
      “To be a part of the Artemis campaign and the future of space is just cool. I was there when the barge underwent its transformation to accommodate the colossal core stage, and in that moment, I realized I was witnessing history unfold. Though I couldn’t be present at the launch of Artemis I, watching it on TV was an emotional experience. To see something you’ve been a part of, something you’ve watched evolve from mere components to a giant spacecraft hurtling into space – it’s a feeling beyond words.”
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      Marshall manages the SLS Program.
      Read other I am Artemis features.
      › Back to Top
      Icelandic Graduate Student Brings High-Performance Computing Knowledge to IMPACT
      By Derek Koehl
      For the last six months, NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) foundation model development team at NASA’s Marshall Space Flight Center, has been joined by Þorsteinn Elí Gíslason, a visiting graduate student at the University of Alabama in Huntsville from the University of Iceland.
      His participation on the Prithvi geospatial foundation model, an open-source geospatial artificial intelligence (AI) foundation model for Earth observation data, was part of a collaboration partnership between NASA, the University of Alabama in Huntsville (UAH), the University of Iceland, and the Jülich Supercomputing Centre in Forschungszentrum Jülich, Germany. 
      Þorsteinn Elí Gíslason, a graduate student from the University of Iceland, is supported by NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center. NASA The goal of the collaboration was to share expertise and knowledge across institutions in an open and synergetic way. This partnership serves as a pathfinder for students to work on an international collaborative project and provides extensive research opportunities to graduate students like Elí in fields such as AI foundation models and high-performance computing (HPC). 
      “Elí demonstrated exceptional support in running experiments on the geospatial foundation model, showcasing his expertise and dedication,” said Sujit Roy, Gíslason’s mentor and IMPACT FM team lead from UAH. “I loved one specific quality of Elí, that he asks a lot of questions and puts effort into understanding the problem statement.”
      Gíslason was instrumental in helping the team overcome the hoops and hurdles involved when pre-training a foundation model on a high-performance computing system. His ability to understand models and scale them to multiple graphics processing units (GPUs) was an instrumental skill for the project. He facilitated scripts and simulations to run seamlessly over multiple nodes and GPUs, optimizing resources and accelerating research outcomes. Additionally, Elí’s adeptness in running these models on high-performance computing systems significantly enhanced the team’s computational efficiency. Gíslason also contributed his knowledge of the Jülich Supercomputing Centre’s HPC systems and served an important role with respect to the Centre’s operations. 
      By helping the team overcome the challenges of pre-training, Gíslason’s interest in AI models expanded.
      “For as long as I can remember, I’ve been interested in programming and computers. I’ve always found it fun to apply programming to a problem I’m facing, especially if it has the opportunity to reduce the overall work required,” said Gíslason. “AI, machine learning, and deep learning are just advanced forms of this interest. These models capture my interest in that they are able to solve problems by capturing patterns that don’t have to be explicitly defined beforehand.”
      Gíslason’s work with IMPACT supports his master’s thesis in computational engineering at the University of Iceland. His graduate work builds on his Bachelor of Science in physics. 
      This collaboration was facilitated by Gabriele Cavallaro from Jülich Supercomputing Center and Manil Maskey, IMPACT deputy project manager and research scientist at Marshall. 
      “Open science thrives on sharing expertise, and artificial intelligence encompasses a vast field requiring knowledge across many areas,” Maskey said. “Elí provided one of the key expertise areas crucial to our project. This collaboration was mutually beneficial- our foundation model project gained from his specialized knowledge, while Elí gained valuable technical skills and experience as part of a major NASA project.”
      IMPACT is managed by Marshall and is part of the center’s Earth Science branch. The collaboration was conducted through the IEEE Geoscience and Remote Sensing Society Earth Science Informatics Technical Committee. Along with IMPACT and Marshall, development of the Prithvi geospatial foundation model featured significant contributions from NASA’s Office of the Chief Science Data Officer, IBM Research, Oak Ridge National Laboratory, and the University of Alabama in Huntsville.
      Koehl is a research associate at the University of Alabama in Huntsville supporting IMPACT.
      › Back to Top
      Delta Aquariid Meteor Shower Best Seen in Southern Hemisphere in Late July
      Most casual skywatchers know the bright, busy Perseids meteor shower arrives in late July and peaks in mid-August. Fewer are likely to name-drop the Southern delta Aquariids, which overlap with the Perseids each summer and are typically outshone by their brighter counterparts, especially when the Moon washes out the Southern delta Aquariids.
      Perseids meteors – which coincide with the Southern Delta Aquariids at the tail end of July – streak over Sequoia National Forest in this 2023 NASA file photo. NASA/Preston Dyches) This year, with the Southern delta Aquariids set to peak on the night of July 28, the underdog shower isn’t likely to deliver any surprises. Unless you’re below the equator, it’ll take a keen eye to spot one.
      “The Southern delta Aquariids have a very strong presence on meteor radars which can last for weeks,” said NASA astronomer Bill Cooke, who leads the Meteoroid Environment Office at NASA’s Marshall Space Flight Center. “Sadly, for most observers in the Northern Hemisphere, they’re difficult to spot with the naked eye, requiring the darkest possible skies.”
      Meteor watchers – particularly those in the southern United States and points south – will be best served to check out the night sky July 28-29 before moonrise at 2 a.m.
      During peak shower activity, under ideal viewing conditions with no Moon in the sky, casual watchers may see 2-5 meteors per hour, flashing into view at speeds of 25 miles per second. A small percentage of these may leave glowing, ionized gas trails that linger visibly for a second or two after the meteor has passed. But most of the noticeable activity for the Southern delta Aquariids occurs over a couple of days around its peak, so don’t expect to see any past the end of July.
      You can distinguish Southern delta Aquariids meteors from the Perseids by identifying their radiant, or the point in the sky from which a meteor appears to originate. Southern delta Aquariids appear to come from the direction of the constellation of Aquarius, hence the name. The Perseids’ radiant is in the constellation of Perseus in the northern sky.
      Most astronomers agree the Southern delta Aquariids originate from Comet 96P/Machholz, which orbits the Sun every 5.3 years. Discovered by Donald Machholz in 1986, the comet’s nucleus is roughly 4 miles across – about half the size of the object suspected to have wiped out the dinosaurs. Researchers think debris causing the Southern delta Aquariid meteor shower was generated about 20,000 years ago.
      › Back to Top
      Juno Mission Captures Colorful, Chaotic Clouds of Jupiter
      During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere. It provides a detailed view of chaotic clouds and cyclonic storms in an area known to scientists as a folded filamentary region. In these regions, the zonal jets that create the familiar banded patterns in Jupiter’s clouds break down, leading to turbulent patterns and cloud structures that rapidly evolve over the course of only a few days.
      During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere.Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Gary Eason © CC BY Citizen scientist Gary Eason made this image using raw data from the JunoCam instrument, applying digital processing techniques to enhance color and clarity.
      At the time the raw image was taken, the Juno spacecraft was about 18,000 miles above Jupiter’s cloud tops, at a latitude of about 68 degrees north of the equator.
      JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience.
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      Learn more about Juno.
      › Back to Top
      View the full article
    • By European Space Agency
      An international team of astronomers using the NASA/ESA/CSA James Webb Space Telescope have directly imaged an exoplanet roughly 12 light-years from Earth. While there were hints that the planet existed, it had not been confirmed until Webb imaged it. The planet is one of the coldest exoplanets observed to date.
      View the full article
  • Check out these Videos

×
×
  • Create New...