Jump to content

NASA Selects Crew for Next Simulated Mars Mission


NASA

Recommended Posts

  • Publishers
c7m1-crew.png?w=2048
NASA selected a crew of four for the agency’s next Human Exploration Research Analog mission, a simulated mission to Mars. From left are Abhishek Bhagat, Susan Hilbig, Kamak Ebadi, and Ariana Lutsic.  
Credit: HERA C7 Crew   

NASA selected a crew of four volunteers to participate in a simulated journey to Mars inside a habitat at the agency’s Johnson Space Center in Houston. 

Abhishek Bhagat, Kamak Ebadi, Susan Hilbig, and Ariana Lutsic will enter the ground-based HERA (Human Exploration Research Analog) facility on Friday, Jan. 26, to live and work like astronauts for 45 days during the simulated mission to the Red Planet. Crew members will exit the facility on March 11, after they “return” to Earth. Two additional volunteers are available as backup crew members.

Without leaving Earth, HERA allows scientists to study how crew members adapt to the isolation, confinement, and work conditions astronauts will experience during future spaceflight missions. Crew members will conduct science, operational, and maintenance tasks while facing communication delays with the outside world lasting up to five minutes as they “approach” Mars.

The new crew will participate in 18 human health studies throughout the simulated mission. The experiments will assess the psychological, physiological, and behavioral responses of crew members millions of miles away from their home planet. Ten studies are new to HERA, including seven led by scientists outside the United States. These international studies are collaborations with the United Arab Emirates’ Mohammed Bin Rashid Space Centre and ESA (European Space Agency).

The upcoming mission marks the first of four simulated missions to Mars that researchers will carry out using HERA in 2024. Each mission will include a different crew of four astronaut-like research volunteers. The final mission is slated to end Dec. 16.

Primary Crew

Abhishek Bhagat

Abhishek Bhagat headshotAbhishek Bhagat is a research electrical engineer for the U.S. Army Engineering Research and Development Center’s Cold Region Research and Engineering Lab. 

Bhagat holds a bachelor’s degree in engineering from Nagpur University in India, a master’s degree in electrical engineering from California State University in Northridge, and a master’s degree in computer science from the University of North America in Fairfax, Virginia. He is currently pursuing a master’s degree in space systems from the Florida Institute of Technology in Melbourne. 

Bhagat began working as a consultant at Samsung Telecom America, which paved the way for subsequent consulting roles with Qualcomm and Sprint. He then served in the U.S. Army. When he transitioned out of active duty, he became an electronics engineer for the Federal Aviation Administration. 

Bhagat received the Army Commendation Medal and remains an Army reservist. In his spare time, he enjoys hiking, climbing mountains, and riding motorcycles.

Kamak Ebadi

untitled-design-12.pngKamak Ebadi is a robotics technologist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California. He is a member of the spaceflight operations team responsible for managing NASA’s Perseverance Rover on Mars. Ebadi also supports NASA’s Artemis program and Mars Sample Return mission through work that helped develop orbital maps and navigation algorithms for the guided descent and precision landing of autonomous spacecraft on the Moon and Mars. 
 
Born in Tehran, Iran, Ebadi relocated to the United States in 2010, driven by his lifelong aspiration to join NASA. He earned his doctorate in robotics from Santa Clara University in California. He was awarded a doctoral fellowship from JPL in 2017 and helped develop a fleet of autonomous robots to explore uncharted subterranean environments. 
 
Ebadi completed postdoctoral research jointly at the California Institute of Technology in Pasadena and JPL. He developed algorithms that control in-space docking and manipulation of uncooperative space objects, such as defunct satellites and asteroids. 
 
In his spare time, Ebadi participates as a board member for a non-profit organization committed to disrupting the cycle of poverty through education. He advocates for STEM education and engages as a space and science communicator across various social media platforms. He enjoys spending quality time with his family, playing the guitar, participating in sports, maintaining a strict fitness routine, and learning to pilot private aircraft.

Susan Hilbig

Susan Hilbig headshotSusan Hilbig, from Durham, North Carolina, is a physician assistant with a focus on aerospace medicine and human performance in isolated, confined environments. She completed her academic training at North Carolina’s Duke University, where she double majored in biology and Earth and ocean science prior to earning a master’s degree in physician assistant studies from Duke University’s School of Medicine.

Hilbig’s passion for exploration led her to pursue research at remote field sites as an undergraduate, taking her across the world for various projects. Most notably, she traveled to the village of Tsinjoarivo, Madagascar, where she collected data on wild populations of the only lemur known to hibernate. Prior to graduate school, Hilbig worked as a clinical research coordinator in neuroscience with a focus on non-invasive brain stimulation. She subsequently worked as a physician assistant in Duke University’s emergency department.

Hilbig has experience with simulated extreme environments in hyperbaric chambers at Duke University’s Dive Medicine Center. As an avid cyclist, Hilbig has spent years leading weeklong cycling tours in Europe, with a regional focus on the Balkans and Northern Italy. Hilbig is a triathlete and general outdoor enthusiast who enjoys hiking, swimming, and scuba diving.

Ariana Lutsic

Ariana Lutsic headshotAriana Lutsic is a scientist and engineer at NASA’s Kennedy Space Center in Florida, specializing in research support for biological payloads on the International Space Station. Over the past seven years, she has held various roles at Kennedy, focusing on plants, animals, and hardware design.

Prior to her work at Kennedy, Lutsic volunteered with conservation and rehabilitation programs at the Sea Turtle Healing Center at the Brevard Zoo. She also served as a kayak guide for bioluminescent tours in the Indian River Lagoon in Florida.

Lutsic obtained her bachelor’s degree in communications from the University of Maryland Global Campus while living in Japan, and earned a master’s degree in space systems from the Florida Institute of Technology. She is currently pursuing another master’s degree at the Florida Institute of Technology, with emphases on marine biology and astrobiology. In her spare time, she enjoys volunteering with STEM programs, coaching youth soccer, and going to the beach with her family.

Back-Up Crew

Gregory Contreras

Gregory Contreras headshotLieutenant Commander Gregory “GM” Contreras is a planner and budget programming analyst for the U.S. Navy’s Integration and Programming Division. He is a native of Pleasant Hill, Calif.

During his 20 years in the Navy, Contreras worked as a surface warfare officer aboard the USS Chafee in Pearl Harbor, Hawaii. He also served as a space systems engineer and technical representative at the U.S. Department of Defense’s National Reconnaissance Office and as an engineering, technical, and logistics adviser on behalf of the United States for the Royal Saudi Navy. 

Contreras earned bachelor’s degrees in naval science and in mechanical engineering in 2007 from the University of Idaho in Moscow. In 2013, he completed a master’s degree in astronautical engineering from the Naval Postgraduate School, Monterey, Calif. His master’s thesis focused on space controls and robotics. He also earned a second master’s degree in engineering administration from Virginia Tech in Fairfax in 2017.

Contreras and his wife have three daughters — Lucia, Alexandra, and Claire — and a cat named Mimi. His passions include playing with his daughters, diving, surfing, and taking long breaks in nature with the family recreational vehicle.

Carli Domenico

Carli Domenico headshotCarli Domenico is a neuroscientist from San Antonio, Texas. She received her doctorate at Baylor College of Medicine, where she studied neural circuits in animal models from pigeons to rats for research that specialized in learning and memory. She has presented her work through talks at conferences, universities, and workshops, and has published in several journals.

In pursuit of impactful science communication, Domenico serves as director of academic and professional programming for the Intercollegiate Psychedelics Network. Domenico has also taught courses and programs in STEM for students in middle school, high school, and college.

Domenico received a Bachelor of Science with honors from Texas A&M University, College Station. She interned at Johnson, investigating astronaut cognition and sleep for long-duration spaceflight. Her thesis research included an independent study investigating inflammation and chronic pain in humans.

She recently received her certification as a yoga instructor. In her free time, she teaches at her community’s aging center, where she volunteers by leading activities and delivering meals. Domenico lives in Cleveland with her husband, golden retriever, and two cats. She enjoys live music, hiking, yoga, cooking, and soccer. 

____

NASA’s Human Research Program, or HRP, pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways that keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers are diving into a synthetic universe to help us better understand the real one. Using supercomputers at the U.S. DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois, scientists have created nearly 4 million simulated images depicting the cosmos as NASA’s Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory, jointly funded by NSF (the National Science Foundation) and DOE, in Chile will see it.
      Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, led the simulation campaign as part of a broader project called OpenUniverse. The team is now releasing a 10-terabyte subset of this data, with the remaining 390 terabytes to follow this fall once they’ve been processed.
      “Using Argonne’s now-retired Theta machine, we accomplished in about nine days what would have taken around 300 years on your laptop,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “The results will shape Roman and Rubin’s future attempts to illuminate dark matter and dark energy while offering other scientists a preview of the types of things they’ll be able to explore using data from the telescopes.”
      This graphic highlights part of a new simulation of what NASA’s Nancy Grace Roman Space Telescope could see when it launches by May 2027. The background spans about 0.11 square degrees (roughly equivalent to half of the area of sky covered by a full Moon), representing less than half the area Roman will see in a single snapshot. The inset zooms in to a region 300 times smaller, showcasing a swath of brilliant synthetic galaxies at Roman’s full resolution. Having such a realistic simulation helps scientists study the physics behind cosmic images –– both synthetic ones like these and future real ones. Researchers will use the observations for many types of science, including testing our understanding of the origin, evolution, and ultimate fate of the universe.C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center A Cosmic Dress Rehearsal
      For the first time, this simulation factored in the telescopes’ instrument performance, making it the most accurate preview yet of the cosmos as Roman and Rubin will see it once they start observing. Rubin will begin operations in 2025, and NASA’s Roman will launch by May 2027.
      The simulation’s precision is important because scientists will comb through the observatories’ future data in search of tiny features that will help them unravel the biggest mysteries in cosmology.
      Roman and Rubin will both explore dark energy –– the mysterious force thought to be accelerating the universe’s expansion. Since it plays a major role in governing the cosmos, scientists are eager to learn more about it. Simulations like OpenUniverse help them understand signatures that each instrument imprints on the images and iron out data processing methods now so they can decipher future data correctly. Then scientists will be able to make big discoveries even from weak signals.
      “OpenUniverse lets us calibrate our expectations of what we can discover with these telescopes,” said Jim Chiang, a staff scientist at DOE’s SLAC National Accelerator Laboratory in Menlo Park, California, who helped create the simulations. “It gives us a chance to exercise our processing pipelines, better understand our analysis codes, and accurately interpret the results so we can prepare to use the real data right away once it starts coming in.”
      Then they’ll continue using simulations to explore the physics and instrument effects that could reproduce what the observatories see in the universe.
      This photo displays Argonne Leadership Computing Facility’s now-retired Theta supercomputer. Scientists use supercomputers to simulate experiments they can’t conduct in real life, such as creating new universes from scratch. Argonne National Laboratory Telescopic Teamwork
      It took a large and talented team from several organizations to conduct such an immense simulation.
      “Few people in the world are skilled enough to run these simulations,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse. “This massive undertaking was only possible thanks to the collaboration between the DOE, Argonne, SLAC, and NASA, which pulled all the right resources and experts together.”
      And the project will ramp up further once Roman and Rubin begin observing the universe.
      “We’ll use the observations to make our simulations even more accurate,” Kiessling said. “This will give us greater insight into the evolution of the universe over time and help us better understand the cosmology that ultimately shaped the universe.”
      The Roman and Rubin simulations cover the same patch of the sky, totaling about 0.08 square degrees (roughly equivalent to a third of the area of sky covered by a full Moon). The full simulation to be released later this year will span 70 square degrees, about the sky area covered by 350 full Moons.
      Overlapping them lets scientists learn how to use the best aspects of each telescope –– Rubin’s broader view and Roman’s sharper, deeper vision. The combination will yield better constraints than researchers could glean from either observatory alone.
      “Connecting the simulations like we’ve done lets us make comparisons and see how Roman’s space-based survey will help improve data from Rubin’s ground-based one,” Heitmann said. “We can explore ways to tease out multiple objects that blend together in Rubin’s images and apply those corrections over its broader coverage.”
      This pair of images showcases the same region of sky as simulated by the Vera C. Rubin Observatory (left, processed by the Legacy Survey of Space and Time Dark Energy Science Collaboration) and NASA’s Nancy Grace Roman Space Telescope (right, processed by the Roman High-Latitude Imaging Survey Project Infrastructure Team). Roman will capture deeper and sharper images from space, while Rubin will observe a broader region of the sky from the ground. Because it has to peer through Earth’s atmosphere, Rubin’s images won’t always be sharp enough to distinguish multiple, close sources as separate objects. They’ll appear to blur together, which limits the science researchers can do using the images. But by comparing Rubin and Roman images of the same patch of sky, scientists can explore how to “deblend” objects and implement the adjustments across Rubin’s broader observations. J. Chiang (SLAC), C. Hirata (OSU), and NASA’s Goddard Space Flight Center Scientists can consider modifying each telescope’s observing plans or data processing pipelines to benefit the combined use of both.
      “We made phenomenal strides in simplifying these pipelines and making them usable,” Kiessling said. A partnership with Caltech/IPAC’s IRSA (Infrared Science Archive) makes simulated data accessible now so when researchers access real data in the future, they’ll already be accustomed to the tools. “Now we want people to start working with the simulations to see what improvements we can make and prepare to use the future data as effectively as possible.”
      OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare scientists for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      The Vera C. Rubin Observatory is a federal project jointly funded by the National Science Foundation and the DOE Office of Science, with early construction funding received from private donations through the LSST Discovery Alliance.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 7 months ago Share
      Details
      Last Updated Jun 12, 2024 Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center High-Tech Computing Missions Science & Research Science-enabling Technology Stars Technology Technology Research The Universe 6 Min Read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      This synthetic image is a slice of a much larger simulation depicting the cosmos as NASA's Nancy Grace Roman Space Telescope will see it when it launches by May 2027. Every blob and speck of light represents a distant galaxy (except for the urchin-like spiky dots, which represent foreground stars in our Milky Way galaxy). Credits: C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California, talks to students from California State University, Northridge, California. As part of the university’s Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, the students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Students from a minority-serving university in California are helping solve challenges of autonomous systems for future drone operations on Earth and other planets. These students are making the most of opportunities with NASA, the U.S. Department of Defense, and industry, focusing on autopilot development and advanced systems that adapt and evolve.
      Students from California State University, Northridge, who are part of the university’s Autonomy Research Center, displayed and discussed their research with posters highlighting the technology they developed at a recent event at Edwards Air Force Base in Edwards, California. A Mars science helicopter, mini rovers for science exploration, and 3D printed sulfur concrete for Mars habitats are some of their projects, and they answered questions from experts in the field on May 23 at the Air Force Test Pilot School auditorium.
      Two men from NASA’s Armstrong Flight Research Center in Edwards, California, ask Jared Carrillo, a student from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, about his work on the Mars Science Helicopter. Students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman “The goal is to help minority-serving institutions develop relationships with NASA,” said Bruce Cogan, a NASA Armstrong Small Business Innovation Research program liaison for the agency’s Aeronautics Research and Mission Directorate. “We want students to make connections and learn how to use NASA processes to submit research proposals. Students could also supplement work in autonomy that NASA wants to pursue.”
      Representatives from NASA’s Armstrong Flight Research Center in Edwards, California, attended the event, looking for potential collaborations with students where NASA Armstrong would provide the funding through sources such as the NASA Armstrong Center Innovation Fund and NASA’s Convergent Aeronautics Solutions project to advance technology.
      Six students from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics spoke about their Trust in Autonomy technology. The students from left are Aniket Christi, Julia Spencer, Dana Bellinger, Zulma Lopez Rodriguez, front, Jordan Jannone, and Samuel Mercado. The group answered questions about their technology May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Use of uncrewed systems will require development of advanced controllers, and ideas like trust in autonomy, or how people can trust what the computers are doing, and human-machine teaming on Mars and Europa missions are examples of potential partnerships, Cogan said.
      Brad Flick, NASA Armstrong center director, and Tim Cacanindin, U.S. Air Force Global Power Bombers Combined Test Force deputy director, spoke at the event. Following the event, more than 50 students and faculty toured NASA Armstrong facilities.
      NASA’s Minority University Research and Education Project Institutional Research Opportunity funds a multi-year grant for the Autonomy Research Center. NASA Armstrong, and NASA’s Jet Propulsion Laboratory in Southern California, co-sponsored the NASA grant.
      Nhut Ho, director of the NASA-sponsored Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics at California State University, Northridge, left, spoke to Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California. The men were attending a student poster event, where students showcased their technologies and answered questions May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Share
      Details
      Last Updated Jun 10, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center General Jet Propulsion Laboratory MUREP STEM Engagement at NASA Explore More
      4 min read NASA Ames Hosts National Wildfire Coordinating Group
      Article 12 hours ago 5 min read Ed Stone, Former Director of JPL, Voyager Project Scientist, Dies
      Article 17 hours ago 2 min read NASA Glenn’s Yvette Harris Inducted into MBA Hall of Fame 
      Article 18 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Technologies
      Space Technology Mission Directorate
      Learning Resources
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NWCG Executive Board members stand in front of giant turbines in the National Full Scale Aerodynamic Complex during their visit to Ames Research Center on May 23, 2024. USAF/Patrick Goulding On May 21-23, 2024, the National Wildfire Coordinating Group (NWCG) visited NASA Ames Research Center, with participants representing 13 agencies and organizations. NWCG is a cooperative group focused on providing national leadership to enable interoperable wildland fire operations among federal, state, local, Tribal, and territorial partners. NASA became an associate member of NWCG in February 2024, with the goal of increasing collaboration across agencies and leveraging NASA data, technology, and innovation for nation-wide efforts in wildland fire management.    

      NASA’s Approach to Wildland Fire Management
      Across the agency, NASA’s approach to wildland fire management involves the application of research and technology before, during, and after a fire, in order to help ecosystems, animals, and human communities thrive. At Ames, two examples of these capabilities are the project office for FireSense and the Advanced Capabilities for Emergency Response Operations (ACERO) project. 

      Wildland fire solutions are a major theme within NASA’s Earth Action strategy. FireSense is part of this NASA-wide approach to wildland fire management, working with operational agencies and partners to measure pre-fire fuels conditions, active fire behavior, post-fire impacts and threats, and provide air quality forecasting. ACERO develops cutting-edge technology to remotely identify, monitor, and suppress wildland fire through the use of uncrewed aircraft.  

      Team members from both projects participated in the NWCG visit, and are represented in NWCG; NASA’s involvement is supported by Parimal Kopardekar (Director of the NASA Aeronautics Research Institute and the Advanced Air Mobility (AAM) Mission Integration Office) and Michael Falkowski (NASA Wildland Fires and FireSense Program Manager). Together, they represent NASA’s cross-mission directorate approach to managing wildland fire across the fire life cycle.  

      NASA Ames’ Involvement in NWCG: Data and Human Performance Characteristics
      By hosting NWCG’s annual offsite Executive Board meeting, Ames personnel were able to connect board members with NASA subject matter experts and project managers, provide tours of Ames facilities relevant to wildland fire management, and discuss NASA’s core capabilities and how they can augment the NWCG’s nation-wide fire management efforts. Specifically, NASA’s data capabilities and human performance characteristics studies were at the forefront of the day’s events.  

      On the data front, conversation centered around how to collectively tackle data continuity, storage, and accessibility. Large-scale computing resources are increasingly essential to store, manage, and incorporate data relevant to wildland fire management. With more advanced sensors on crewed aircraft, uncrewed aircraft, and satellites, addressing data continuity, storage, and accessibility are an essential piece of supporting wildland fire managers. 

      Ian Brosnan, Principal Investigator for NASA Earth eXchange (NEX), provided details about the NEX supercomputing and data analytics platform at Ames. The platform serves as a tool to increase availability of data from NASA missions and other sources, models, analysis tools, and research results, and the team uses this platform to investigate questions relevant to the increasing impact of wildland fire. For instance, their work uses machine learning and complex data integration to link air quality emissions and fire behavior, in order to detect wildfire ignition and spread. 

      The other focus of the Ames tour was NASA simulations and studies surrounding human performance characteristics, which refers to the human component of wildland fire management – such as managing fatigue in the field. Supporting the workforce is a primary goal for improving overall response to wildland fire management, as highlighted in the Wildfire Mitigation and Management Commission Report.  

      On this visit, NWCG members were able to meet with Jessica Nowinski, Division Chief of the Human Systems Integration Division, for a Human Factors overview, followed by a presentation by Immanuel Barshi on astronaut and pilot training, and a presentation by Cassie Hilditch on fatigue studies. NWCG Executive Board members were also able to tour the Airspace Operations Laboratory, with a particular focus on drones. The visit concluded with a tour of the National Full Scale Aerodynamic Complex, colloquially referred to as the Wind Tunnel.   
      The NWCG tour concluded in the National Full Scale Aerodynamic Complex; the group provides a sense of scale for just how massive the turbines are that pull air into the 120-foot wind tunnel. Patrick Goulding/USAF The Future of NASA and NWCG
      NWCG’s strength is fostering partnership, and many discussions over the three-day visit leveraged complementary strengths between the agencies. Bringing together research specialties, technology innovation, existing programs and campaigns, and subject expertise makes the national approach to wildland fire management more unified, efficient, and effective.  

      Looking forward, NASA’s involvement with NWCG will continue to produce partnership opportunities and further the national wildland fire management goals. NASA personnel are connecting with NWCG committees – including Data Management, Geospatial, Aviation and Risk Management – and will continue to support NWCG objectives by connecting subject matter experts across the agency with NWCG subject matter experts in the field.  
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 11, 2024 Related Terms
      General View the full article
    • By NASA
      NASA logo. Credit: NASA NASA will award funding to nearly 250 small business teams to develop new technologies to address agency priorities, such as carbon neutrality and energy storage for various applications in space and on Earth. The new awards from NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program invest in a diverse portfolio of American small businesses and research institutions to support NASA’s future missions.
      About 34% of the companies selected are first-time NASA SBIR/STTR recipients. Each proposal team will receive $150,000 to establish the merit and feasibility of their innovations for a total agency investment of $44.85 million.
      “NASA is proud to continue its commitment to the creation and elevation of technologies that blaze trails in space and on Earth,” said Jenn Gustetic, director of early-stage innovation and partnerships for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington.
      The Phase I SBIR contract awards small businesses and lasts for six months, while the Phase I STTR contract awards small businesses in partnership with a research institution and lasts for 13 months. In total, 209 small businesses received SBIR awards, and 39 small businesses and their research institution partners – including eight Minority Serving Institutions – received STTR awards. The complete list of this year’s SBIR and STTR awardees are available online.
      One of the firms working to address carbon neutrality is Exquadrum Inc., a minority-owned small business in Victorville, California. Exquadrum’s proposed technology will contribute to NASA’s effort to make the U.S. carbon neutral by 2050. The proposed technology offers higher energy conversion efficiency with no emission of pollutants. The propulsion system is compact and lightweight compared to current systems. The fuel and its products are safe to handle, and the propulsion system is reliable under extreme weather conditions. The propulsion system has the potential to aid the exploration of planets that have atmospheres like that of Mars.
      “Through our partnership with, and investment in, small businesses and research institutions, NASA continues to forge a crucial path in the development of technologies that have a concerted focus on long-term commercial uses,” said Jason L. Kessler, program executive for NASA’s SBIR/STTR program. “Our ongoing support of diverse innovators from throughout the country will continue to foster an ecosystem that will nurture the intrapreneurial spirit to drive innovation and exciting results.”
      The new SBIR/STTR investments will impact 41 states, including a team with Energized Composite Technologies, in Orlando, Florida, partnering with the University of Central Florida. Together, they will explore using carbon fiber-reinforced thermoplastic composite structural batteries for repurposable space applications, offering a multifunctional solution that integrates structural integrity with energy storage capabilities. The proposed structural battery panels integrate energy storage functionality into the structural components of the spacecraft, minimizing the additional space required for electrical storage while maximizing the available volume for payload. The structural battery panels used for the space vehicle could be repurposed after landing because the thermoplastic-based structural panels can be reshaped for other uses.
      NASA selected Phase I proposals to receive funding by judging their technical merit and responsiveness to known challenges. Based on their progress during Phase I, companies may submit proposals for up to $850,000 in Phase II funding to develop a prototype and subsequent SBIR/STTR Post Phase II opportunities.
      To learn more about NASA’s SBIR/STTR program and apply to future opportunities, visit:
      https://sbir.nasa.gov/
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      jasmine.s.hopkins@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Flight Opportunities program sent two university payloads on suborbital flight tests onboard Virgin Galactic’s VSS Unity on June 8 when it launched from Spaceport America in Las Cruces, New Mexico.
      The payloads carrying scientific research from University of California, Berkeley and Purdue University in West Lafayette, Indiana, align with critical technology needs that NASA has identified in pursuit of the agency’s space commerce and exploration goals. The payload from UC Berkeley, studied a new type of 3D printing and the payload from Purdue studied how sloshing of liquid propellant affects spacecraft direction.
      The need to print building materials in space without having to transport them will be critical in the coming years as humans live and work in space for longer durations. Optimizing spacecraft and satellite design will help us increase the rate of scientific discoveries both here on our home planet and on the Moon, Mars, and beyond. 
      “Our program enables researchers to move from the lab to flight test rapidly, and in many cases, multiple flight tests across different commercial vehicles. This allows them the invaluable opportunity to learn from initial tests, implement improvements, and then fly again – or as we like to say, ‘fly, fix, fly,’” said Danielle McCulloch, program manager for Flight Opportunities at NASA’s Armstrong Flight Research Center in Edwards, California.
      Photo credit: Virgin Galactic
      Share
      Details
      Last Updated Jun 11, 2024 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Armstrong Flight Research Center Flight Opportunities Program Space Technology Mission Directorate Explore More
      2 min read Food Safety Program for Space Has Taken Over on Earth
      System created for Apollo astronaut food has become the global standard for hazard prevention
      Article 1 day ago 5 min read NASA’s Laser Relay System Sends Pet Imagery to, from Space Station
      Article 5 days ago 1 min read The First Responder UAS Wireless Data Gatherer Challenge
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Armstrong Space Projects
      View the full article
  • Check out these Videos

×
×
  • Create New...