Jump to content

Discovery Alert: Earth-sized Planet Has a ‘Lava Hemisphere’


NASA

Recommended Posts

  • Publishers

4 min read

Discovery Alert: Earth-sized Planet Has a ‘Lava Hemisphere’

An artist's concept illustration shows a planet large in the frame and back-lit by a nearby bright yellow star. Another planet in the system can be seen as a black dot crossing the face of the star against the background of space.
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It’s also the closest discovered Earth-sized planet this young, at about 400 million years old.
NASA/Ames/JPL-Caltech/T. Pyle

The discovery: In a system with two known planets, astronomers spotted something new: a small object transiting across the Sun-sized star. This turned out to be another planet: extra hot and Earth-sized.

Key Facts: The newly-spotted planet, called HD 63433 d, is tidally locked, meaning there is a dayside which always faces its star and a side that is constantly in darkness. This exoplanet, or planet outside of our solar system, orbits around the star HD 63433 (TOI 1726) in the HD 63433 planetary system. This scorching world is the smallest confirmed exoplanet younger than 500 million years old. It’s also the closest discovered Earth-sized planet this young, at about 400 million years old.

Details: A team of astronomers analyzed this system using data from NASA’s TESS (Transiting Exoplanet Survey Satellite), which spots “transits,” or instances where planets cross in front of their star as they orbit, blocking a tiny piece of the starlight. Two planets had already been previously discovered in this planetary system, so to see what else might be lurking in the star’s orbit, the team took the data and removed the signals of the

two known planets. This allowed them to see an additional signal – a small transit that would reappear every 4.2 days. Upon further investigation, they were able to validate that this was actually a third, smaller planet.

The tidally locked planet is very close to Earth size (it is approximately 1.1 times the diameter of our own planet) and it’s orbiting a star that’s similar to the size of our Sun (the star is about 0.91 the size and 0.99 the mass of the Sun).

The star in this system is a G-type star, the same type as our Sun. But HD 63433 d orbits much closer to its star than we do, with a minuscule 4.2 day long “year” and extremely high temperatures on its dayside. 

Fun Facts: While this newly found planet and its star are just about the size of our own planet and Sun, HD 63433 d is quite different from our home world.

Firstly, it is a very young planet in a very young system. The planetary system itself is about 10 times younger than ours and this 400-million-year-old planet is in its infancy compared to our 4.5-billion-year-old world.

It is also much closer to its star than we are to ours. This planet is 8 times closer to its star than Mercury is to the Sun. Being so close to its star, this dayside of this tidally-locked planet can reach temperatures of about 2,294 Fahrenheit (1,257 Celsius). Being so hot, so close to its star, and so small, this planet likely lacks a substantial atmosphere.

These scorching temperatures are comparable to lava worlds like CoRoT-7 b and Kepler-10 b, and the team behind this discovery thinks that the planet’s dayside could be a “lava hemisphere.”

The planet’s small size, young age, and closeness to its star make it an interesting candidate for further exploration. Follow-up study could confirm the results of this study and potentially reveal more information about the planet’s “dark side,” and the status of its (possible) atmosphere. As this study states, “Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution.”

The Discoverers: This discovery was described in a new study, accepted for publication in the Astronomical Journal, titled “TESS Hunt for Young and Maturing Exoplanets (THYME) XI: An Earth-sized Planet Orbiting a Nearby, Solar-like Host in the 400 Myr Ursa Major Moving Group.” The study, led by co-authors Benjamin Capistrant and Melinda Soares-Furtado, will be discussed in a Jan. 10 presentation at the 2024 American Astronomical Society Meeting.

This study was conducted as part of the TESS Hunt for Young and Maturing Exoplanets, which is a project focused on searching for young exoplanets that are in moving groups, stellar associations, or open clusters.

Read the paper.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      James Webb Telescope Discovers A Smelly Planet!
    • By NASA
      4 min read
      Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed!
      NASA’s Exoplanet Archive confirmed four new worlds, bringing the total past 5,500. On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond our own solar system, scientists announced the discovery of six new exoplanets, stretching that number to 5,502. From zero exoplanet confirmations to over 5,500 in just a few decades, this new milestone marks another major step in the journey to understand the worlds beyond our solar system.
      The Discovery
      With the discovery of six new exoplanets, scientists have tipped the scales and surpassed 5,500 exoplanets found (there are now 5,502 known exoplanets, to be exact).
      Just about 31 years ago, in 1992, the first exoplanets were confirmed when scientists detected twin planets Poltergeist and Phobetor orbiting the pulsar PSR B1257+12. In March 2022, just last year, scientists celebrated passing 5,000 exoplanets discovered.
      Key Facts 
      Scientists have discovered six new exoplanets — HD 36384 b, TOI-198 b, TOI-2095 b, TOI-2095 c, TOI-4860 b, and MWC 758 c — this has pushed the total number of confirmed exoplanets discovered to 5,502.
      Details
      HD 36384 b is a super-Jupiter that orbits an enormous M giant star.
      This planet was discovered using the radial velocity method, which measures the “wobble” of far-off stars that is caused by the gravitational tug of orbiting planets. Orbits a star so large that it clocks in at nearly 40 times the size of our Sun. TOI-198 b is a potentially rocky planet that orbits on the innermost edge of the habitable zone around its star, an M dwarf.
      This planet was discovered using the transit method, which detects exoplanets as they cross the face of their stars in their orbit, causing the star to temporarily dim. TOI-2095 b and TOI-2095 c are both large, hot super-Earths that orbit in the same system around a shared star, an M dwarf.
      Planets were both discovered using the transit method. Are close enough to their star that they are likely more similar to Venus than Earth. TOI-4860 b is a Jupiter-sized gas giant, or a “hot Jupiter,” that orbits an M dwarf star.
      This planet was discovered using the transit method. Completes an orbit every 1.52 days, meaning it is very close to its star. While it is extremely rare for giant planets like this to orbit so closely to Sun-like stars, it is even rarer for them to orbit M-dwarf stars as is the case here. MWC 758 c is a giant protoplanet that orbits a very young star. This star still has its protoplanetary disk, which is a rotating disc of gas and dust that can surround a young star.
      This planet was discovered using direct imaging. Was found carving spiral arms into its star’s protoplanetary disk. Is one of the first exoplanets discovered in a system where the star has a protoplanetary disk. The field of exoplanet science has exploded since the first exoplanet confirmation in 1992, and with evolving technology, the future for this field looks brighter than ever.
      In March 2022, NASA passed 5,000 confirmed exoplanets. Tis data sonification allows us to hear the pace of the discovery of those worlds. In this animation, exoplanets are represented by musical notes played across decades of discovery. Circles show location and size of orbit, while their color indicates the detection method. Lower notes mean longer orbits, higher notes mean shorter orbits. Credit: NASA/JPL-Caltech/M. Russo, A. Santaguida (SYSTEM Sounds) Watch this video in 3D There are a number of both space and ground-based instruments and observatories that scientists have used to detect and study exoplanets.
      NASA’s Transiting Exoplanet Survey Satellite (TESS) launched in 2018 and has identified thousands of exoplanet candidates and confirmed over 320 planets.
      NASA’s flagship space telescopes Spitzer, Hubble, and most recently the James Webb Space Telescope have also been used to discover and study exoplanets.
      NASA’s Nancy Grace Roman Space Telescope is set to launch in May 2027. Roman will be carrying a technology demonstration called the Roman Coronagraph Instrument. This coronagraph will work by using a series of complex masks and mirrors to distort the light coming from far-away stars. By distorting this starlight, the instrument will reveal and directly-image hidden exoplanets.
      With the success of the Roman Coronagraph Instrument, NASA could push the envelope even further with is a concept for the mission the Habitable Worlds Observatory, which would search for “signatures of life on planets outside of our solar system,” according to the 2020 Decadal Survey on Astronomy and Astrophysics.
      The Discoverers 
      These six exoplanets were discovered by different teams as part of five separate studies:
      TOI-4860 b TOI-2095 b & c HD 36384 b TOI-198 b MWC 758 c Share








      Details
      Last Updated Jul 16, 2024 Related Terms
      Exoplanet Discoveries Exoplanet Exploration Program Exoplanets Gas Giant Exoplanets Studying Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets Explore More
      6 min read NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World


      Article


      2 days ago
      5 min read Webb Finds Plethora of Carbon Molecules Around Young Star


      Article


      1 month ago
      4 min read Discovery Alert: Spock’s Home Planet Goes ‘Poof’


      Article


      2 months ago
      Keep Exploring Discover More Topics From NASA
      Exoplanets



      Universe



      Roman



      Exoplanet Catalog


      View the full article
    • By NASA
      The inaugural CHAPEA (Crew Health and Performance Exploration Analog) crew is “back on Earth” after walking out of their simulated Martian habitat at NASA’s Johnson Space Center in Houston on July 6. The first of three simulated missions, CHAPEA Mission 1 was designed to help scientists, engineers, and mission planners better understand how living on another world could affect human health and performance.
      Kelly Haston, commander, Ross Brockwell, flight engineer, Nathan Jones, medical officer, and Anca Selariu, science officer, lived and worked in an isolated 1,700-square-foot, 3D-printed habitat to support human health and performance research to prepare for future missions to Mars.
      “Congratulations to the crew of CHAPEA Mission 1 on their completion of a year in a Mars-simulated environment,” said NASA Administrator Bill Nelson. “Through the Artemis missions, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars. The CHAPEA missions are critical to developing the knowledge and tools needed for humans to one day live and work on the Red Planet.”
      The crew stepped out of the habitat and back into the arms of family and friends after a 378-day simulated Mars surface mission that began June 25, 2023.
      This high-fidelity simulation involved the crew carrying out different types of mission objectives, including simulated “marswalks,” robotic operations, habitat maintenance, exercise, and crop growth. The crew also faced intentional environmental stressors in their habitat such as resource limitations, isolation, and confinement. For the next two weeks, the volunteers will complete post-mission data collection activities before returning home.
      “We planned the last 378 days with many of the challenges crews could face on Mars and this crew dedicated their lives over that time to achieve these unprecedented operational objectives,” said CHAPEA Principal Investigator Grace Douglas. “I am looking forward to diving into the data we have gathered, preparing for CHAPEA Mission 2 and eventually, a human presence on Mars.”
      As NASA works to establish a long-term presence for scientific discovery and exploration on the Moon through the Artemis campaign, analog missions like CHAPEA provide scientific data to validate systems and develop technological solutions for future missions to Mars.
      Two additional one-year CHAPEA missions are planned, with the next targeted to begin in 2025. The subsequent missions will be nearly identical, allowing researchers to collect data from more participants to expand the dataset and provide a broader perspective on the impacts of Mars-realistic resource limitations, isolation and confinement on human health and performance.
      NASA has several other avenues for gathering isolation research, including the Human Exploration Research Analog, Antarctica, and other analogs, as well as human spaceflight missions to the International Space Station to ensure key research goals can be completed to inform future human missions to the Moon and Mars.
      The CHAPEA simulated missions are unique because they test the impacts of extended isolation and confinement with the addition of Mars-realistic time delays of communicating to Earth – up to 44-minutes roundtrip – along with resource limitations relevant to Mars, including a more limited food system that can be supported on the space station and in other analogs.
      To view the ceremony of crew exiting their habitat, visit here.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Learn more about CHAPEA at:
      www.nasa.gov/humans-in-space/chapea/
      View the full article
    • By NASA
      4 min read
      Mapping the Red Planet with the Power of Open Science
      This image of Perseverance’s backshell sitting upright on the surface of Jezero Crater was collected from an altitude of 26 feet (8 meters) by NASA’s Ingenuity Mars Helicopter during its 26th flight at Mars on April 19, 2022. NASA/JPL-Caltech Mars rovers can only make exciting new discoveries thanks to human scientists making careful decisions about their next stop. The Mars 2020 mission is aimed at exploring the geology of Jezero Crater and seeking signs of ancient microbial life on Mars using the Perseverance rover. Scientists at NASA’s Jet Propulsion Laboratory (JPL) in Southern California used novel mapping techniques to direct both the rover and the flights of the Ingenuity helicopter, which rode to Mars on Perseverance — and they did it all with open-source tools. 
      JPL mapping specialists Dr. Fred Calef III and Dr. Nathan Williams used geospatial analysis to help the scientific community and NASA science leadership select Jezero Crater as the landing site for Perseverance and Ingenuity. Before the vehicles arrived on Mars, they helped create maps of the terrain using data from orbiting satellites. 
      “Maps and images are a common language between different people — scientists, engineers, and management,” Williams said. “They help make sure everyone’s on the same page moving forward, in a united front to achieve the best science that we can.” 
      Maps and images are a common language between different people.
      Nathan Williams
      NASA JPL Geologist and Systems Engineer
      After the mission touched down on Mars in February 2021, the Ingenuity helicopter opportunistically scouted ahead to take photos. The team then generated more detailed maps from both rover and helicopter image data to help plan the Perseverance rover’s path and science investigations.
      To enable this full-scale mapping of Mars, Calef created the Multi-Mission Geographic Information System (MMGIS), an open-source web-based mapping interface. Online demos of the software, pre-loaded with Mars imagery taken from orbit, allow visitors to explore the paths of Perseverance, Ingenuity, and the Curiosity rover, a sister Mars mission that landed in 2012.
      This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023. The rover is in the upper left of the image, parked at a light-toned rocky outcrop. NASA/JPL-Caltech The open nature of the software was key to the mission’s success. “We have people literally all over the world who are working on the mission, and we need to be able to give them fast and quick access to software and data,” Calef said.
      MMGIS aimed to help people understand the full scope of Martian geography. By combining images from orbit and augmenting with images from Perseverance and Ingenuity, the JPL team allows researchers to zoom in to see individual boulders and zoom out to see all of Mars. This variety of viewpoints gives the team a sense of scale and context to properly understand the landscape around the Perseverance rover, and how to optimally achieve their science goals within the available terrain.
      This image of an area the Mars Perseverance rover team calls “Faillefeu” was captured by NASA’s Ingenuity Mars Helicopter during its 13th flight at Mars on Sept. 4, 2021. Images of the geologic feature were taken at the request of the Mars Perseverance rover science team, which was considering visiting the geologic feature during the first science campaign. NASA/JPL-Caltech The impact of the tools developed by the JPL team went beyond the Mars 2020 mission. The team wanted their software to help other researchers easily visualize their data without needing to be data visualization experts themselves. Thanks to this open-source approach, other teams have now used MMGIS to map Earth and other planetary bodies.
      In keeping with this open philosophy, the images taken by Perseverance and Ingenuity over the course of the Mars 2020 mission are freely available to the public. By sharing these data with the rest of the world, the results from the mission can be used to educate, inspire, and enable further research.
      It’s being able to share data between people … getting a higher order of science.
      Fred Calef
      NASA JPL Geologist and Data Scientist
      As Mars scientists look to the future, with the Perseverance rover team deploying even more advanced tools powered by AI, open science will pave the way for further exploration. JPL is now working on designs for potential future Mars helicopters that are far more capable and complex than Ingenuity. Payload mass, flight range, and affordability are at the forefront of their minds.
      Existing open-source tools will help address those concerns. Not only are open-source applications free to use, but the large amount of collaboration in creating and testing them means that they’re often highly reliable.
      Ultimately, the JPL team views its work as part of the cycle of open science, using open tools to make its job easier while also developing new features in the tools for others to use in the future. “Every mission is contributing back to the other missions and future missions in terms of new tools and techniques to develop,” Calef said. “It’s not just you working on something. It’s being able to share data between people … getting a higher order of science.”
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Jun 27, 2024 Related Terms
      Open Science Explore More
      4 min read NASA-IBM Collaboration Develops INDUS Large Language Models for Advanced Science Research


      Article


      2 days ago
      4 min read Marshall Research Scientist Enables Large-Scale Open Science


      Article


      7 days ago
      2 min read NASA’s Repository Supports Research of Commercial Astronaut Health  


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles (3,800 kilometers).Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY) Infrared imagery from the solar-powered spacecraft heats up the discussion on the inner workings of Jupiter’s hottest moon.
      New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.
      Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes — along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.
      In both May and October 2023, Juno flew by Io, coming within about 21,700 miles (35,000 kilometers) and 8,100 miles (13,000 kilometers), respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.
      Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.
      “The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)
      Fire-Breathing Lakes
      JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.
      This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. NASA/JPL-Caltech/SwRI/MSSS “We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” said Mura. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” — bowl-shaped features created by volcanism — “and moving across the moon’s surface.”
      JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.
      An alternative hypothesis remains in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.
      “We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”
      Juno executed its 62nd flyby of Jupiter — which included an Io flyby at an altitude of about 18,175 miles (29,250 kilometers) — on June 13. The 63rd flyby of the gas giant is scheduled for July 16.
      More About the Mission
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      More information about Juno is available at:
      https://science.nasa.gov/mission/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters
      202-385-1287 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254dschmid@swri.org
      Share
      Details
      Last Updated Jun 26, 2024 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      5 min read Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes
      Article 6 days ago 2 min read Voyager 1 Returning Science Data From All Four Instruments
      The spacecraft has resumed gathering information about interstellar space. NASA’s Voyager 1 spacecraft is conducting…
      Article 2 weeks ago 4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...