Jump to content

Physics-based Modeling and Tool Development for the Characterization and Uncertainty Quantification of Crater Formation and Ejecta Dynamics due to Plume-surface Interaction


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

David Scarborough
Auburn University

Professor Scarborough will develop and implement tools to extract critical data from experimental measurements of plume surface interaction (PSI) to identify and classify dominant regimes, develop physics-based, semi-empirical models to predict the PSI phenomena, and quantify the uncertainties. The team will adapt and apply state-of-the-art image processing techniques such as edge detection, 3D-stereo reconstruction to extract the cratering dynamics, and particle tracking velocimetry to extract ejecta dynamics and use supervised Machine Learning algorithms to identify patterns. The models developed will establish a relationship between crater geometry and ejecta dynamics, including quantified uncertainties.

Back to ESI 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA logo. Credit: NASA NASA will award funding to nearly 250 small business teams to develop new technologies to address agency priorities, such as carbon neutrality and energy storage for various applications in space and on Earth. The new awards from NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program invest in a diverse portfolio of American small businesses and research institutions to support NASA’s future missions.
      About 34% of the companies selected are first-time NASA SBIR/STTR recipients. Each proposal team will receive $150,000 to establish the merit and feasibility of their innovations for a total agency investment of $44.85 million.
      “NASA is proud to continue its commitment to the creation and elevation of technologies that blaze trails in space and on Earth,” said Jenn Gustetic, director of early-stage innovation and partnerships for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington.
      The Phase I SBIR contract awards small businesses and lasts for six months, while the Phase I STTR contract awards small businesses in partnership with a research institution and lasts for 13 months. In total, 209 small businesses received SBIR awards, and 39 small businesses and their research institution partners – including eight Minority Serving Institutions – received STTR awards. The complete list of this year’s SBIR and STTR awardees are available online.
      One of the firms working to address carbon neutrality is Exquadrum Inc., a minority-owned small business in Victorville, California. Exquadrum’s proposed technology will contribute to NASA’s effort to make the U.S. carbon neutral by 2050. The proposed technology offers higher energy conversion efficiency with no emission of pollutants. The propulsion system is compact and lightweight compared to current systems. The fuel and its products are safe to handle, and the propulsion system is reliable under extreme weather conditions. The propulsion system has the potential to aid the exploration of planets that have atmospheres like that of Mars.
      “Through our partnership with, and investment in, small businesses and research institutions, NASA continues to forge a crucial path in the development of technologies that have a concerted focus on long-term commercial uses,” said Jason L. Kessler, program executive for NASA’s SBIR/STTR program. “Our ongoing support of diverse innovators from throughout the country will continue to foster an ecosystem that will nurture the intrapreneurial spirit to drive innovation and exciting results.”
      The new SBIR/STTR investments will impact 41 states, including a team with Energized Composite Technologies, in Orlando, Florida, partnering with the University of Central Florida. Together, they will explore using carbon fiber-reinforced thermoplastic composite structural batteries for repurposable space applications, offering a multifunctional solution that integrates structural integrity with energy storage capabilities. The proposed structural battery panels integrate energy storage functionality into the structural components of the spacecraft, minimizing the additional space required for electrical storage while maximizing the available volume for payload. The structural battery panels used for the space vehicle could be repurposed after landing because the thermoplastic-based structural panels can be reshaped for other uses.
      NASA selected Phase I proposals to receive funding by judging their technical merit and responsiveness to known challenges. Based on their progress during Phase I, companies may submit proposals for up to $850,000 in Phase II funding to develop a prototype and subsequent SBIR/STTR Post Phase II opportunities.
      To learn more about NASA’s SBIR/STTR program and apply to future opportunities, visit:
      https://sbir.nasa.gov/
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      jasmine.s.hopkins@nasa.gov
      View the full article
    • By Space Force
      The third annual 2024 Department of the Air Force Modeling and Simulation Summit was held at the Grand Hyatt River Walk in San Antonio, Texas, May 7-9.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and Salisbury University (SU) in Maryland signed a collaborative Space Act Agreement Thursday, March 28, 2024, opening new opportunities at the agency’s Wallops Flight Facility in Virginia for students in science, technology, engineering, and mathematics (STEM) fields.
      NASA’s Goddard Space Flight Center Director Dr. Makenzie Lystrup (right) shakes hands with Salisbury University President Dr. Carolyn R. Lepre during the SU Space Act Agreement signing ceremony held in Salisbury, Md., Thursday, March 28, 2024. Provost and Senior Vice President of Academic Affairs for SU Dr. Laurie Couch (left) and NASA’s Wallops Flight Facility Director David Pierce stand behind them.NASA/Jamie Adkins The agreement forges a formal partnership to identify research and engineering projects and activities at Wallops designed to provide SU students and professors with experiential, hands-on activities. 
      “Our success at NASA, now and in the future, depends on a dynamic network of partnerships focused on our mission operations and growing the next generation of innovators,” said Dr. Makenzie Lystrup, center director at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “NASA’s partnership with Salisbury University expands our workforce development ecosystem and provides students with real-world experience in critical aerospace career fields.” NASA Goddard manages Wallops Flight Facility for the agency.
      The agreement also lays a framework for expanding internship opportunities at Wallops, mentoring, technical expertise to faculty, and support for job fairs and other career development programs aimed to expand awareness of careers in the aerospace industry. 
      “NASA Wallops has long been at the forefront of space exploration, pioneering breakthroughs that have expanded our understanding of the universe and inspired generations of scientists, engineers, and dreamers,” said Dr. Carolyn Ringer Lepre, SU president. “Together, we will leverage our collective expertise, resources, and ingenuity to tackle some of the most pressing challenges facing our world today.” 
      Dr. Makenzie Lystrup speaks during the Salisbury University Space Act Agreement signing ceremony held in Salisbury, Md., Thursday, March 28, 2024. The agreement will expand internship opportunities at NASA’s Wallops Flight Facility in Virginia, mentoring, technical expertise to faculty, and support for job fairs and other career development programs aimed to expand awareness of careers in the aerospace industry. NASA/Jamie Adkins Wallops’ conducts upwards of 50 operational science and technology missions worldwide annually launching on orbital and suborbital rockets, scientific balloons, and flying on airborne science platforms. In addition, NASA’s commercial partners like Rocket Lab are increasing launch operations on the facility.  
      “Our operations are growing at Wallops underscoring the need for an innovative, skilled workforce to advance our science and technology missions,” said Lystrup. “This agreement is helping us fill a critical workforce need to propel us into the future.”  
      For more information on programs at Wallops, visit: 
      www.nasa.gov/wallops  
      Share
      Details
      Last Updated Mar 28, 2024 EditorJamie Adkins Related Terms
      Wallops Flight Facility Partner with NASA STEM STEM Engagement at NASA View the full article
    • By NASA
      Sea level rise is affecting coastal communities around the world, especially those like Honolulu, pictured, that are located on islands.NOAA Teacher at Sea Program, NOAA Ship HI’IALAKAI A long-term sea level dataset shows ocean surface heights continuing to rise at faster and faster rates over decades of observations.
      Global average sea level rose by about 0.3 inches (0.76 centimeters) from 2022 to 2023, a relatively large jump due mostly to a warming climate and the development of a strong El Niño. The total rise is equivalent to draining a quarter of Lake Superior into the ocean over the course of a year.
      This NASA-led analysis is based on a sea level dataset featuring more than 30 years of satellite observations, starting with the U.S.-French TOPEX/Poseidon mission, which launched in 1992. The Sentinel-6 Michael Freilich mission, which launched in November 2020, is the latest in the series of satellites that have contributed to this sea level record.
      The data shows that global average sea level has risen a total of about 4 inches (9.4 centimeters) since 1993. The rate of this increase has also accelerated, more than doubling from 0.07 inches (0.18 centimeters) per year in 1993 to the current rate of 0.17 inches (0.42 centimeters) per year.
      This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech “Current rates of acceleration mean that we are on track to add another 20 centimeters of global mean sea level by 2050, doubling the amount of change in the next three decades compared to the previous 100 years and increasing the frequency and impacts of floods across the world,” said Nadya Vinogradova Shiffer, director for the NASA sea level change team and the ocean physics program in Washington.
      Seasonal Effects
      Global sea level saw a significant jump from 2022 to 2023 due mainly to a switch between La Niña and El Niño conditions. A mild La Niña from 2021 to 2022 resulted in a lower-than-expected rise in sea level that year. A strong El Niño developed in 2023, helping to boost the average amount of rise in sea surface height.
      La Niña is characterized by cooler-than-normal ocean temperatures in the equatorial Pacific Ocean. El Niño involves warmer-than-average ocean temperatures in the equatorial Pacific. Both periodic climate phenomena affect patterns of rainfall and snowfall as well as sea levels around the world.
      “During La Niña, rain that normally falls in the ocean falls on the land instead, temporarily taking water out of the ocean and lowering sea levels,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “In El Niño years, a lot of the rain that normally falls on land ends up in the ocean, which raises sea levels temporarily.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This animation shows the rise in global mean sea level from 1993 to 2023 based on data from a series of five international satellites. The spike in sea level from 2022 to 2023 is mostly a consequence of climate change and the development of El Niño conditions in the Pacific Ocean. Credit: NASA’s Scientific Visualization Studio A Human Footprint
      Seasonal or periodic climate phenomena can affect global average sea level from year to year. But the underlying trend for more than three decades has been increasing ocean heights as a direct response to global warming due to the excessive heat trapped by greenhouse gases in Earth’s atmosphere.
      “Long-term datasets like this 30-year satellite record allow us to differentiate between short-term effects on sea level, like El Niño, and trends that let us know where sea level is heading,” said Ben Hamlington, lead for NASA’s sea level change team at JPL.
      These multidecadal observations wouldn’t be possible without ongoing international cooperation, as well as scientific and technical innovations by NASA and other space agencies. Specifically, radar altimeters have helped produce ever-more precise measurements of sea level around the world. To calculate ocean height, these instruments bounce microwave signals off the sea surface, recording the time the signal takes to travel from a satellite to Earth and back, as well as the strength of the return signal.
      The researchers also periodically cross-check those sea level measurements against data from other sources. These include tide gauges, as well as satellite measurements of factors like atmospheric water vapor and Earth’s gravity field that can affect the accuracy of sea level measurements. Using that information, the researchers recalibrated the 30-year dataset, resulting in updates to sea levels in some previous years. That includes a sea level rise increase of 0.08 inches (0.21 centimeters) from 2021 to 2022.
      When researchers combine space-based altimetry data of the oceans with more than a century of observations from surface-based sources, such as tide gauges, the information dramatically improves our understanding of how sea surface height is changing on a global scale. When these sea level measurements are combined with other information, including ocean temperature, ice loss, and land motion, scientists can decipher why and how seas are rising.
      Learn more about sea level and climate change:
      https://sealevel.nasa.gov/
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-031
      Share
      Details
      Last Updated Mar 21, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Sentinel-6 Michael Freilich Satellite TOPEX / Poseidon (ocean TOPography EXperiment) Explore More
      5 min read US, Germany Partnering on Mission to Track Earth’s Water Movement
      Article 2 days ago 5 min read NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact
      Article 2 days ago 3 min read Student-Built Robots Clash at Competition Supported by NASA-JPL
      Article 3 days ago View the full article
    • By NASA
      “If I knew that I was going to get to where I’m at [today], I would have gone through it all over again. I would have went through changing my major. I would have gone through the divorce. I would have went through the heartbreak of thinking, ‘I’m not going to be what I wanted to be when I grow up.’ That’s OK.
      “Back then, when I realized that I wasn’t going to be an on-air meteorologist, it was heartbreaking. But now, I’m all right with that. It’s been a bumpy ride for me, but in the end, it’s been the greatest thing.
      “…I love to share the messy ride. It’s OK that you have bumps. It’s OK if there’s obstacles. You have your goals, but it’s OK if there’s hiccups. You can still be a mess and be successful.”
      – Emily Timko, Icing Cloud Characterization Engineer, NASA’s Glenn Research Center
      Image Credit: NASA/Quentin Schwinn
      Interviewer: NASA/Thalia Patrinos
      Check out some of our other Faces of NASA. 
      View the full article
  • Check out these Videos

×
×
  • Create New...