Jump to content

Be a Burst Chaser and Witness the Most Powerful Explosions in the Universe!


Recommended Posts

  • Publishers

2 min read

Be a Burst Chaser and Witness the Most Powerful Explosions in the Universe!

Text overlaying a hazy purple image of the
The Burst Chaser Project was launched today at the American Astronomical Society meeting in New Orleans, Louisiana.
Credit: NASA Goddard Space Flight Center/Zooniverse

Yes, the universe IS talking to you! Gamma-ray bursts, massive explosions visible from everywhere in the observable universe, are telling us something about how stars end their lives and how massive black holes form. Now astronomers are asking you join the Burst Chaser project to read the signals from these bursts and decode what the universe is saying. 

NASA’s Neil Gehrels SWIFT observatory regularly detects pulses of gamma rays, a very energetic form of light, coming from billions of light years away. At Burst Chaser, you’ll examine plots that show how much gamma ray energy arrived at this space telescope as a function of time and classify their shapes—the pulse shapes. 

Gamma-ray bursts are known to be mostly connected to supernovae or the mergers of neutron stars and black holes, but exactly how these events produce pulses with such a variety of characteristics remains a mystery. “We need your help to classify these pulses for more clues of what they really are!” said Professor Amy Lien from the University of Tampa, the project’s Principal Investigator.  

Besides professional astronomers like Lien, the project’s science team includes three undergraduate students from the University of Tampa: Katherine Kurilov, Carter Murawski, and Sebastian Reisch. Several NASA volunteers also helped design the project: Sovan Acharya, Eduardo Antonini, Sumit Banerjee, Marco Zaccaria Di Fraia, Jonathan Holden, Vikrant Kurmude, Hugo Durantini Luca, Orleo Marinaro, John Yablonsky, and U.S. military veteran, Danny Roylance, interviewed here. The project platform is hosted by Zooniverse, a NASA Partner.

You can join this amazing collaboration, too. Go to https://www.zooniverse.org/projects/amylien/burst-chaser to help produce the first pulse structure catalog and unveil the mysterious origins of gamma-ray bursts!



Last Updated
Jan 08, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Using the NASA/ESA/CSA James Webb Space Telescope, scientists have found a record-breaking galaxy observed only 290 million years after the big bang.
      Over the last two years, scientists have used the NASA/ESA/CSA James Webb Space Telescope to explore what astronomers refer to as Cosmic Dawn – the period in the first few hundred million years after the big bang where the first galaxies were born. These galaxies provide vital insight into the ways in which the gas, stars, and black holes were changing when the universe was very young. In October 2023 and January 2024, an international team of astronomers used Webb to observe galaxies as part of the JWST Advanced Deep Extragalactic Survey (JADES) programme. Using Webb’s NIRSpec (Near-Infrared Spectrograph), scientists obtained a spectrum of a record-breaking galaxy observed only two hundred and ninety million years after the big bang. This corresponds to a redshift of about 14, which is a measure of how much a galaxy’s light is stretched by the expansion of the Universe.
      This infrared image from Webb’s NIRCam (Near-Infrared Camera) was captured as part of the JADES programme. The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.
      In the background image, blue represents light at 0.9, 1.15, and 1.5 microns (filters F090W + F115W + F150W), green is 2.0 and 2.77 microns (F200W + F277W), and red is 3.56, 4.1, and 4.44 microns (F356W + F410M + F444W). The pullout image shows light at 0.9 and 1.15 microns (F090W + F115W) as blue, 1.5 and 2.0 microns (F150W + F200W) as green, and 2.77 microns (F277W) as red.
      These results were captured as part of spectroscopic observations from the Guaranteed Time Observations (GTO) programme 1287, and the accompanying MIRI data as part of GTO programme 1180.
      Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
      [Image description: A field of thousands of small galaxies of various shapes and colors on the black background of space. A bright, foreground star with diffraction spikes is at lower left. Near the image center, a tiny white box outlines a region and two diagonal lines lead to a box in the upper right. Within the box is a banana-shaped blob that is blueish-red in one half and distinctly red in the other half. An arrow points to the redder portion and is labeled “JADES GS z 14 – 0”.]
      Release on esawebb.org
      View the full article
    • By USH
      A crew member on a research vessel on a trip studying bioluminescence in the Gulf of Mexico filmed what appears to be a USO. 

      Here is his testimony: Before you read: I understand this is not technically a “UFO”, because it was seen in the water. 
      I work on a research vessel. Recently we had a trip, studying bioluminescence in the Gulf of Mexico. Around 2345, we were conducting research as normal, when a science party member saw a strange light about a quarter mile off our stern. 
      We immediately started to make way towards the light. The intensity of the light was quite astonishing, nobody in the crew or the science party knew what to make of it. At first, we thought it could have been a sunken vessel, or a navigation buoy of some kind that sunk. 
      We proceeded to get as close as possible to the light, and eventually we hovered directly on top of it. Our vessel has a moonpool in the center, which the crew and science party were able to carefully observe the light from directly on top. 
      We used a sub-surface camera to attempt and capture what the object may have been. The science party onboard automatically ruled out the light being produced by bioluminescent phytoplankton. 
      This light source was 100% on the bottom of the ocean, and not something that was floating through the water column. It did not move in the current. The water depth at this specific location was 60’ deep. As we hovered on top of the light, we used an EK-80 ( sonar ) to provide us with imagining of the ocean floor at this location. 
      To our surprise, this object producing the light did not have a physical shape that we could detect. It was invisible to our sonar. The sonar is also capable of imaging objects that are below the sea floor ( objects that could be partially submerged in the mud ), and objects that could be as small as 3’ in length/ width. 
      Any speculations on what this object could have been? Consider the strength of the light having to shine through 60’ of water, and being strong enough for us to observe from a considerable distance away. There was definitely an arc of visibility that seemed to be brighter when viewed from further away, then top down. 
      TLDR: Saw a very bright light source shining from the ocean floor, was invisible on our sonar. Object had no physical shape but produced a strong light. 
      See more original images and videos of the strange light: https://imgur.com/a/LpYobmL
        View the full article
    • By European Space Agency
      ESA’s gamma-ray space telescope Integral has played a decisive role in capturing jets of matter being expelled into space at one-third the speed of light. The material and energy were liberated when huge explosions occurred on the surface of a neutron star. This world-first observation proved to be “a perfect experiment” for exploring astrophysical jets of all descriptions.
      View the full article
    • By NASA
      6 min read
      NASA’s Webb, Hubble Telescopes Affirm Universe’s Expansion Rate, Puzzle Persists
      When you are trying to solve one of the biggest conundrums in cosmology, you should triple check your homework. The puzzle, called the “Hubble Tension,” is that the current rate of the expansion of the universe is faster than what astronomers expect it to be, based on the universe’s initial conditions and our present understanding of the universe’s evolution.
      Scientists using NASA’s Hubble Space Telescope and many other telescopes consistently find a number that does not match predictions based on observations from ESA’s (European Space Agency’s) Planck mission. Does resolving this discrepancy require new physics? Or is it a result of measurement errors between the two different methods used to determine the rate of expansion of space?
      This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the farthest galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the universe. The distance calculated from Cepheids has been cross-correlated with a type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the universe’s expansion rate deeper into space.
      Download this Image

      Hubble has been measuring the current rate of the universe’s expansion for 30 years, and astronomers want to eliminate any lingering doubt about its accuracy. Now, Hubble and NASA’s James Webb Space Telescope have tag-teamed to produce definitive measurements, furthering the case that something else – not measurement errors – is influencing the expansion rate.
      “With measurement errors negated, what remains is the real and exciting possibility we have misunderstood the universe,” said Adam Riess, a physicist at Johns Hopkins University in Baltimore. Riess holds a Nobel Prize for co-discovering the fact that the universe’s expansion is accelerating, due to a mysterious phenomenon now called “dark energy.”
      As a crosscheck, an initial Webb observation in 2023 confirmed that Hubble measurements of the expanding universe were accurate. However, hoping to relieve the Hubble Tension, some scientists speculated that unseen errors in the measurement may grow and become visible as we look deeper into the universe. In particular, stellar crowding could affect brightness measurements of more distant stars in a systematic way.
      The SH0ES (Supernova H0 for the Equation of State of Dark Energy) team, led by Riess, obtained additional observations with Webb of objects that are critical cosmic milepost markers, known as Cepheid variable stars, which now can be correlated with the Hubble data.
      “We’ve now spanned the whole range of what Hubble observed, and we can rule out a measurement error as the cause of the Hubble Tension with very high confidence,” Riess said.
      The team’s first few Webb observations in 2023 were successful in showing Hubble was on the right track in firmly establishing the fidelity of the first rungs of the so-called cosmic distance ladder.
      Astronomers use various methods to measure relative distances in the universe, depending upon the object being observed. Collectively these techniques are known as the cosmic distance ladder – each rung or measurement technique relies upon the previous step for calibration.
      But some astronomers suggested that, moving outward along the “second rung,” the cosmic distance ladder might get shaky if the Cepheid measurements become less accurate with distance. Such inaccuracies could occur because the light of a Cepheid could blend with that of an adjacent star – an effect that could become more pronounced with distance as stars crowd together and become harder to distinguish from one another.
      The observational challenge is that past Hubble images of these more distant Cepheid variables look more huddled and overlapping with neighboring stars at ever farther distances between us and their host galaxies, requiring careful accounting for this effect. Intervening dust further complicates the certainty of the measurements in visible light. Webb slices though the dust and naturally isolates the Cepheids from neighboring stars because its vision is sharper than Hubble’s at infrared wavelengths.
      At the center of these side-by-side images is a special class of star used as a milepost marker for measuring the universe’s rate of expansion – a Cepheid variable star. The two images are very pixelated because they are a very zoomed-in view of a distant galaxy. Each of the pixels represents one or more stars. The image from the James Webb Space Telescope is significantly sharper at near-infrared wavelengths than Hubble (which is primarily a visible-ultraviolet light telescope). By reducing the clutter with Webb’s crisper vision, the Cepheid stands out more clearly, eliminating any potential confusion. Webb was used to look at a sample of Cepheids and confirmed the accuracy of the previous Hubble observations that are fundamental to precisely measuring the universe’s expansion rate and age. NASA, ESA, CSA, STScI, Adam G. Riess (JHU, STScI)
      Download this Image

      “Combining Webb and Hubble gives us the best of both worlds. We find that the Hubble measurements remain reliable as we climb farther along the cosmic distance ladder,” said Riess.
      The new Webb observations include five host galaxies of eight Type Ia supernovae containing a total of 1,000 Cepheids, and reach out to the farthest galaxy where Cepheids have been well measured – NGC 5468 – at a distance of 130 million light-years. “This spans the full range where we made measurements with Hubble. So, we’ve gone to the end of the second rung of the cosmic distance ladder,” said co-author Gagandeep Anand of the Space Telescope Science Institute in Baltimore, which operates the Webb and Hubble telescopes for NASA.
      Hubble and Webb’s further confirmation of the Hubble Tension sets up other observatories to possibly settle the mystery. NASA’s upcoming Nancy Grace Roman Space Telescope will do wide celestial surveys to study the influence of dark energy, the mysterious energy that is causing the expansion of the universe to accelerate. ESA’s Euclid observatory, with NASA contributions, is pursuing a similar task.
      At present it’s as though the distance ladder observed by Hubble and Webb has firmly set an anchor point on one shoreline of a river, and the afterglow of the big bang observed by Planck’s measurement from the beginning of the universe is set firmly on the other side. How the universe’s expansion was changing in the billions of years between these two endpoints has yet to be directly observed. “We need to find out if we are missing something on how to connect the beginning of the universe and the present day,” said Riess.
      These finding were published in the February 6, 2024 issue of The Astrophysical Journal Letters.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. Goddard also conducts mission operations with Lockheed Martin Space in Denver, Colorado. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations for NASA.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      More Webb News: https://science.nasa.gov/mission/webb/latestnews/
      More Hubble News: https://science.nasa.gov/mission/hubble/hubble-news/
      More Webb Images: https://science.nasa.gov/mission/webb/multimedia/images/
      More Hubble Images: https://science.nasa.gov/mission/hubble/multimedia/hubble-images/
      Webb Mission Page: https://science.nasa.gov/mission/webb/
      Hubble Mission Page: https://science.nasa.gov/mission/hubble/
      Learn More

      Hubble Reaches New Milestone in Mystery of Universe’s Expansion Rate

      Mystery of the Universe’s Expansion Rate Widens With New Hubble Data

      NASA’s Hubble Extends Stellar Tape Measure 10 Times Farther Into Space

      Discovering the Runaway Universe

      Media Contacts:
      Claire Andreoli – claire.andreoli@nasa.gov
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard, Christine Pulliam
      Space Telescope Science Institute, Baltimore, MD

      Last Updated Mar 11, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Missions Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope

      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

      James Webb Space Telescope

      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

      Galaxies Stories

      NASA Astrophysics

      View the full article
  • Check out these Videos

  • Create New...