Jump to content

Recommended Posts

  • Publishers
Posted

For the first time astronomers have combined data from NASA’s Chandra X-ray Observatory and James Webb Space Telescope to study the well-known supernova remnant Cassiopeia A (Cas A). As described in our latest press release, this work has helped explain an unusual structure in the debris from the destroyed star called the “Green Monster”, first discovered in Webb data in April 2023. The research has also uncovered new details about the explosion that created Cas A about 340 years ago, from Earth’s perspective.

A new composite image contains X-rays from Chandra (blue), infrared data from Webb (red, green, blue), and optical data from Hubble (red and white). The outer parts of the image also include infrared data from NASA’s Spitzer Space Telescope (red, green and blue). The outline of the Green Monster can be seen by mousing over the image.

The Chandra data reveals hot gas, mostly from supernova debris from the destroyed star, including elements like silicon and iron. In the outer parts of Cas A the expanding blast wave is striking surrounding gas that was ejected by the star before the explosion. The X-rays are produced by energetic electrons spiraling around magnetic field lines in the blast wave. These electrons light up as thin arcs in the outer regions of Cas A, and in parts of the interior. Webb highlights infrared emission from dust that is warmed up because it is embedded in the hot gas seen by Chandra, and from much cooler supernova debris. The Hubble data shows stars in the field.

A separate graphic shows a color Chandra image, where red shows iron and magnesium at low X-ray energies, green shows silicon at intermediate X-ray energies and blue shows the highest energy X-rays, from electrons spiraling around magnetic field lines. An outline of the Green Monster, plus the locations of the blast wave, and of debris rich in silicon and iron are labeled.

Chandra Image of Cassiopeia A, Labeled
Chandra Image of Cassiopeia A, Labeled
Credit: NASA/CXC/SAO

Detailed analysis by the researchers found that filaments in the outer part of Cas A, from the blast wave, closely matched the X-ray properties of the Green Monster, including less iron and silicon than in the supernova debris. This interpretation is apparent from the color Chandra image, which shows that the colors inside the Green Monster’s outline best match with the colors of the blast wave rather than the debris with iron and silicon. The authors conclude that the Green Monster was created by a blast wave from the exploded star slamming into material surrounding it, supporting earlier suggestions from the Webb data alone.

The debris from the explosion is seen by Chandra because it is heated to tens of millions of degrees by shock waves, akin to sonic booms from a supersonic plane. Webb can see some material that has not been affected by shock waves, what can be called “pristine” debris.

To learn more about the supernova explosion, the team compared the Webb view of the pristine debris with X-ray maps of radioactive elements that were created in the supernova. They used NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) data to map radioactive titanium — still visible today — and Chandra to map where radioactive nickel was by measuring the locations of iron. Radioactive nickel decays to form iron. An additional image shows the iron-rich debris (tracing where radioactive nickel was located) in green, the radioactive titanium in blue and the pristine debris seen in orange and yellow.

Iron/Titanium/Pristine Debris Cassiopeia A, Labeled
Iron/Titanium/Pristine Debris Cassiopeia A, Labeled
Credit: NASA/CXC/SAO

Some filaments of pristine debris near the center of Cas A, seen with Webb, are connected to the iron seen with Chandra farther out. Radioactive titanium is seen where pristine debris is relatively weak.

These comparisons suggest that radioactive material seen in X-rays has helped shape the pristine debris near the center of the remnant seen with Webb, forming cavities. The fine structures in the pristine debris were most likely formed when the star’s inner layers were violently mixed with hot, radioactive matter produced during collapse of the star’s core under gravity.

These results were presented by Dan Milisavljevic from Purdue University at the 243rd meeting of the American Astronomical Society in New Orleans. They are described in more detail in two papers submitted to Astrophysical Journal Letters, one led by Milisavljevic focused on the Webb results (preprint here) and the other led by Jacco Vink of the University of Amsterdam focused on the Chandra results (preprint here). The co-authors of Vink’s paper are Manan Agarwal (University of Amsterdam, the Netherlands), Patrick Slane (Center for Astrophysics | Harvard & Smithsonian – CfA), Ilse De Looze (Ghent University, Belgium), Dan Milisavljevic, Daniel Patnaude (CfA), Paul Plucinsky (CfA), and Tea Temin (Princeton University). Related papers by other members of the research team are also in preparation.

The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

A Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington, NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp. in Dulles, Virginia. NuSTAR’s mission operations center is at the University of California, Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. ASI provides the mission’s ground station and a mirror data archive. Caltech manages JPL for NASA.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This image of Cassiopeia A resembles a disk of electric light with red clouds, glowing white streaks, red and orange flames, and an area near the center of the remnant resembling a somewhat circular region of green lightning. X-rays from Chandra are blue and reveal hot gas, mostly from supernova debris from the destroyed star, and include elements like silicon and iron. X-rays are also present as thin arcs in the outer regions of the remnant.

Infrared data from Webb is red, green, and blue. Webb highlights infrared emission from dust that is warmed up because it is embedded in the hot gas seen by Chandra, and from much cooler supernova debris. Hubble data shows a multitude of stars that permeate the field of view.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hydrocarbon lake and methane rain clouds on Titan Jenny McElligott/eMITS NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.
      Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane. 
      On Earth, liquid water is thought to have been essential for the origin of life as we know it. Many astrobiologists have wondered whether Titan’s liquids could also provide an environment for the formation of the molecules required for life – either as we know it or perhaps as we don’t know it – to take hold there.
      New NASA research, published in the International Journal of Astrobiology, outlines a process by which stable vesicles might form on Titan, based on our current knowledge of the moon’s atmosphere and chemistry. The formation of such compartments is an important step in making the precursors of living cells (or protocells).
      The process involves molecules called amphiphiles, which can self-organize into vesicles under the right conditions. On Earth, these polar molecules have two parts, a hydrophobic (water-fearing) end and a hydrophilic (water-loving) end. When they are in water, groups of these molecules can bunch together and form ball-like spheres, like soap bubbles, where the hydrophilic part of the molecule faces outward to interact with the water, thereby ‘protecting’ the hydrophobic part on the inside of the sphere. Under the right conditions, two layers can form creating a cell-like ball with a bilayer membrane that encapsulates a pocket of water on the inside.
      When considering vesicle formation on Titan, however, the researchers had to take into account an environment vastly different from the early Earth.
      Uncovering Conditions on Titan
      Huygens captured this aerial view of Titan from an altitude of 33,000 feet. ESA/NASA/JPL/University of Arizona Titan is Saturn’s largest moon and the second largest in our solar system. Titan is also the only moon in our solar system with a substantial atmosphere.
      The hazy, golden atmosphere of Titan kept the moon shrouded in mystery for much of human history. However, when NASA’s Cassini spacecraft arrived at Saturn in 2004, our views of Titan changed forever.
      Thanks to Cassini, we now know Titan has a complex meteorological cycle that actively influences the surface today. Most of Titan’s atmosphere is nitrogen, but there is also a significant amount of methane (CH4). This methane forms clouds and rain, which falls to the surface to cause erosion and river channels, filling up the lakes and seas. This liquid then evaporates in sunlight to form clouds once again.
      This atmospheric activity also allows for complex chemistry to happen. Energy from the Sun breaks apart molecules like methane, and the pieces then reform into complex organic molecules. Many astrobiologists believe that this chemistry could teach us how the molecules necessary for the origin of life formed and evolved on the early Earth.
      Building Vesicles on Titan
      The new study considered how vesicles might form in the freezing conditions of Titan’s hydrocarbon lakes and seas by focusing on sea-spray droplets, thrown upwards by splashing raindrops. On Titan, both spray droplets and the sea surface could be coated in layers of amphiphiles. If a droplet then lands on the surface of a pond, the two layers of amphiphiles meet to form a double-layered (or bilayer) vesicle, enclosing the original droplet. Over time, many of these vesicles would be dispersed throughout the pond and would interact and compete in an evolutionary process that could lead to primitive protocells.
      If the proposed pathway is happening, it would increase our understanding of the conditions in which life might be able to form. 
      “The existence of any vesicles on Titan would demonstrate an increase in order and complexity, which are conditions necessary for the origin of life,” explains Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re excited about these new ideas because they can open up new directions in Titan research and may change how we search for life on Titan in the future.”
      NASA’s first mission to Titan is the upcoming Dragonfly rotorcraft, which will explore the surface of the Saturnian moon. While Titan’s lakes and seas are not a destination for Dragonfly (and the mission won’t carry the light-scattering instrument required to detect such vesicles), the mission will fly from location to location to study the moon’s surface composition, make atmospheric and geophysical measurements, and characterize the habitability of Titan’s environment.
      News Media Contacts
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
    • By Amazing Space
      Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
    • By NASA
      To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
      Take a tour through this section of the Cat’s Paw Nebula.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
    • By NASA
      The TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will help scientists understand an explosive process called magnetic reconnection and its effects in Earth’s atmosphere. Credit: University of Iowa/Andy Kale NASA will hold a media teleconference at 11 a.m. EDT on Thursday, July 17, to share information about the agency’s upcoming Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS, mission, which is targeted to launch no earlier than late July.
      The TRACERS mission is a pair of twin satellites that will study how Earth’s magnetic shield — the magnetosphere — protects our planet from the supersonic stream of material from the Sun called solar wind. As they fly pole to pole in a Sun-synchronous orbit, the two TRACERS spacecraft will measure how magnetic explosions send these solar wind particles zooming down into Earth’s atmosphere — and how these explosions shape the space weather that impacts our satellites, technology, and astronauts.
      Also launching on this flight will be three additional NASA-funded payloads. The Athena EPIC (Economical Payload Integration Cost) SmallSat, led by NASA’s Langley Research Center in Hampton, Virginia, is designed to demonstrate an innovative, configurable way to put remote-sensing instruments into orbit faster and more affordably. The Polylingual Experimental Terminal technology demonstration, managed by the agency’s SCaN (Space Communications and Navigation) program, will showcase new technology that empowers missions to roam between communications networks in space, like cell phones roam between providers on Earth. Finally, the Relativistic Electron Atmospheric Loss (REAL) CubeSat, led by Dartmouth College in Hanover, New Hampshire, will use space as a laboratory to understand how high-energy particles within the bands of radiation that surround Earth are naturally scattered into the atmosphere, aiding the development of methods for removing these damaging particles to better protect satellites and the critical ground systems they support.
      Audio of the teleconference will stream live on the agency’s website at:
      nasa.gov/live
      Participants include:
      Joe Westlake, division director, Heliophysics, NASA Headquarters Kory Priestley, principal investigator, Athena EPIC, NASA Langley Greg Heckler, deputy program manager for capability development, SCaN, NASA Headquarters David Miles, principal investigator for TRACERS, University of Iowa Robyn Millan, REAL principal investigator, Dartmouth College To participate in the media teleconference, media must RSVP no later than 10 a.m. on July 17 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online. 
      The TRACERS mission will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      This mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s HeliophysicsDivision at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and University of California, Berkeley, all lead instruments on TRACERS that will study changes in the Earth’s magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the Venture-class Acquisition of Dedicated and Rideshare contract.
      To learn more about TRACERS, please visit:
      nasa.gov/tracers
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
      Earth Heliophysics Science Mission Directorate Solar Wind TRACERS View the full article
  • Check out these Videos

×
×
  • Create New...