Jump to content

NASA, SpaceX Invite Media to Crew-8 Mission Launch to Space Station


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

53285589053-0b3c3266c4-o.jpg?w=2048
NASA’s SpaceX Crew-8 members, (from left) Alexander Grebenkin from Roscosmos; Michael Barratt, Matthew Dominick, and Jeanette Epps, all NASA astronauts, are pictured training inside the SpaceX Dragon spacecraft in Hawthorne, California.
SpaceX

Media accreditation now is open for the launch of NASA’s eighth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft Endeavour that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.

Launch of NASA’s SpaceX Crew-8 mission is targeted for no earlier than mid-February from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

The launch will carry NASA astronauts Matthew Dominick, commander; Michael Barratt, pilot; and Jeanette Epps, mission specialist; along with Roscosmos cosmonaut Alexander Grebenkin, mission specialist. This is the first spaceflight for Dominick, Epps, and Grebenkin, and the third spaceflight for Barratt.

Following a short handover period, astronauts from NASA’s SpaceX Crew-7 mission are scheduled for return to Earth aboard their SpaceX Dragon Endurance spacecraft.

Media accreditation deadlines for the Crew-8 launch are as follows:

  • U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EST on Friday, Feb. 2.
  • International media without U.S. citizenship must apply by 11:59 p.m. on Friday, Jan. 19.

All accreditation requests must be submitted online at:

https://media.ksc.nasa.gov

NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, please email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, Feb. 12.

For other questions, please contact NASA Kennedy’s newsroom: at 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.

For launch coverage and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

News Media Contacts:

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Steve Siceloff / Danielle Sempsrott
Kennedy Space Center, Fla.
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Share

Details

Last Updated
Jan 05, 2024
Editor
Claire A. O'Shea

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers are diving into a synthetic universe to help us better understand the real one. Using supercomputers at the U.S. DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois, scientists have created nearly 4 million simulated images depicting the cosmos as NASA’s Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory, jointly funded by NSF (the National Science Foundation) and DOE, in Chile will see it.
      Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, led the simulation campaign as part of a broader project called OpenUniverse. The team is now releasing a 10-terabyte subset of this data, with the remaining 390 terabytes to follow this fall once they’ve been processed.
      “Using Argonne’s now-retired Theta machine, we accomplished in about nine days what would have taken around 300 years on your laptop,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “The results will shape Roman and Rubin’s future attempts to illuminate dark matter and dark energy while offering other scientists a preview of the types of things they’ll be able to explore using data from the telescopes.”
      This graphic highlights part of a new simulation of what NASA’s Nancy Grace Roman Space Telescope could see when it launches by May 2027. The background spans about 0.11 square degrees (roughly equivalent to half of the area of sky covered by a full Moon), representing less than half the area Roman will see in a single snapshot. The inset zooms in to a region 300 times smaller, showcasing a swath of brilliant synthetic galaxies at Roman’s full resolution. Having such a realistic simulation helps scientists study the physics behind cosmic images –– both synthetic ones like these and future real ones. Researchers will use the observations for many types of science, including testing our understanding of the origin, evolution, and ultimate fate of the universe.C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center A Cosmic Dress Rehearsal
      For the first time, this simulation factored in the telescopes’ instrument performance, making it the most accurate preview yet of the cosmos as Roman and Rubin will see it once they start observing. Rubin will begin operations in 2025, and NASA’s Roman will launch by May 2027.
      The simulation’s precision is important because scientists will comb through the observatories’ future data in search of tiny features that will help them unravel the biggest mysteries in cosmology.
      Roman and Rubin will both explore dark energy –– the mysterious force thought to be accelerating the universe’s expansion. Since it plays a major role in governing the cosmos, scientists are eager to learn more about it. Simulations like OpenUniverse help them understand signatures that each instrument imprints on the images and iron out data processing methods now so they can decipher future data correctly. Then scientists will be able to make big discoveries even from weak signals.
      “OpenUniverse lets us calibrate our expectations of what we can discover with these telescopes,” said Jim Chiang, a staff scientist at DOE’s SLAC National Accelerator Laboratory in Menlo Park, California, who helped create the simulations. “It gives us a chance to exercise our processing pipelines, better understand our analysis codes, and accurately interpret the results so we can prepare to use the real data right away once it starts coming in.”
      Then they’ll continue using simulations to explore the physics and instrument effects that could reproduce what the observatories see in the universe.
      This photo displays Argonne Leadership Computing Facility’s now-retired Theta supercomputer. Scientists use supercomputers to simulate experiments they can’t conduct in real life, such as creating new universes from scratch. Argonne National Laboratory Telescopic Teamwork
      It took a large and talented team from several organizations to conduct such an immense simulation.
      “Few people in the world are skilled enough to run these simulations,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse. “This massive undertaking was only possible thanks to the collaboration between the DOE, Argonne, SLAC, and NASA, which pulled all the right resources and experts together.”
      And the project will ramp up further once Roman and Rubin begin observing the universe.
      “We’ll use the observations to make our simulations even more accurate,” Kiessling said. “This will give us greater insight into the evolution of the universe over time and help us better understand the cosmology that ultimately shaped the universe.”
      The Roman and Rubin simulations cover the same patch of the sky, totaling about 0.08 square degrees (roughly equivalent to a third of the area of sky covered by a full Moon). The full simulation to be released later this year will span 70 square degrees, about the sky area covered by 350 full Moons.
      Overlapping them lets scientists learn how to use the best aspects of each telescope –– Rubin’s broader view and Roman’s sharper, deeper vision. The combination will yield better constraints than researchers could glean from either observatory alone.
      “Connecting the simulations like we’ve done lets us make comparisons and see how Roman’s space-based survey will help improve data from Rubin’s ground-based one,” Heitmann said. “We can explore ways to tease out multiple objects that blend together in Rubin’s images and apply those corrections over its broader coverage.”
      This pair of images showcases the same region of sky as simulated by the Vera C. Rubin Observatory (left, processed by the Legacy Survey of Space and Time Dark Energy Science Collaboration) and NASA’s Nancy Grace Roman Space Telescope (right, processed by the Roman High-Latitude Imaging Survey Project Infrastructure Team). Roman will capture deeper and sharper images from space, while Rubin will observe a broader region of the sky from the ground. Because it has to peer through Earth’s atmosphere, Rubin’s images won’t always be sharp enough to distinguish multiple, close sources as separate objects. They’ll appear to blur together, which limits the science researchers can do using the images. But by comparing Rubin and Roman images of the same patch of sky, scientists can explore how to “deblend” objects and implement the adjustments across Rubin’s broader observations. J. Chiang (SLAC), C. Hirata (OSU), and NASA’s Goddard Space Flight Center Scientists can consider modifying each telescope’s observing plans or data processing pipelines to benefit the combined use of both.
      “We made phenomenal strides in simplifying these pipelines and making them usable,” Kiessling said. A partnership with Caltech/IPAC’s IRSA (Infrared Science Archive) makes simulated data accessible now so when researchers access real data in the future, they’ll already be accustomed to the tools. “Now we want people to start working with the simulations to see what improvements we can make and prepare to use the future data as effectively as possible.”
      OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare scientists for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      The Vera C. Rubin Observatory is a federal project jointly funded by the National Science Foundation and the DOE Office of Science, with early construction funding received from private donations through the LSST Discovery Alliance.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 7 months ago Share
      Details
      Last Updated Jun 12, 2024 Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center High-Tech Computing Missions Science & Research Science-enabling Technology Stars Technology Technology Research The Universe 6 Min Read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      This synthetic image is a slice of a much larger simulation depicting the cosmos as NASA's Nancy Grace Roman Space Telescope will see it when it launches by May 2027. Every blob and speck of light represents a distant galaxy (except for the urchin-like spiky dots, which represent foreground stars in our Milky Way galaxy). Credits: C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California, talks to students from California State University, Northridge, California. As part of the university’s Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, the students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Students from a minority-serving university in California are helping solve challenges of autonomous systems for future drone operations on Earth and other planets. These students are making the most of opportunities with NASA, the U.S. Department of Defense, and industry, focusing on autopilot development and advanced systems that adapt and evolve.
      Students from California State University, Northridge, who are part of the university’s Autonomy Research Center, displayed and discussed their research with posters highlighting the technology they developed at a recent event at Edwards Air Force Base in Edwards, California. A Mars science helicopter, mini rovers for science exploration, and 3D printed sulfur concrete for Mars habitats are some of their projects, and they answered questions from experts in the field on May 23 at the Air Force Test Pilot School auditorium.
      Two men from NASA’s Armstrong Flight Research Center in Edwards, California, ask Jared Carrillo, a student from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, about his work on the Mars Science Helicopter. Students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman “The goal is to help minority-serving institutions develop relationships with NASA,” said Bruce Cogan, a NASA Armstrong Small Business Innovation Research program liaison for the agency’s Aeronautics Research and Mission Directorate. “We want students to make connections and learn how to use NASA processes to submit research proposals. Students could also supplement work in autonomy that NASA wants to pursue.”
      Representatives from NASA’s Armstrong Flight Research Center in Edwards, California, attended the event, looking for potential collaborations with students where NASA Armstrong would provide the funding through sources such as the NASA Armstrong Center Innovation Fund and NASA’s Convergent Aeronautics Solutions project to advance technology.
      Six students from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics spoke about their Trust in Autonomy technology. The students from left are Aniket Christi, Julia Spencer, Dana Bellinger, Zulma Lopez Rodriguez, front, Jordan Jannone, and Samuel Mercado. The group answered questions about their technology May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Use of uncrewed systems will require development of advanced controllers, and ideas like trust in autonomy, or how people can trust what the computers are doing, and human-machine teaming on Mars and Europa missions are examples of potential partnerships, Cogan said.
      Brad Flick, NASA Armstrong center director, and Tim Cacanindin, U.S. Air Force Global Power Bombers Combined Test Force deputy director, spoke at the event. Following the event, more than 50 students and faculty toured NASA Armstrong facilities.
      NASA’s Minority University Research and Education Project Institutional Research Opportunity funds a multi-year grant for the Autonomy Research Center. NASA Armstrong, and NASA’s Jet Propulsion Laboratory in Southern California, co-sponsored the NASA grant.
      Nhut Ho, director of the NASA-sponsored Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics at California State University, Northridge, left, spoke to Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California. The men were attending a student poster event, where students showcased their technologies and answered questions May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Share
      Details
      Last Updated Jun 10, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center General Jet Propulsion Laboratory MUREP STEM Engagement at NASA Explore More
      4 min read NASA Ames Hosts National Wildfire Coordinating Group
      Article 12 hours ago 5 min read Ed Stone, Former Director of JPL, Voyager Project Scientist, Dies
      Article 17 hours ago 2 min read NASA Glenn’s Yvette Harris Inducted into MBA Hall of Fame 
      Article 18 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Technologies
      Space Technology Mission Directorate
      Learning Resources
      View the full article
    • By European Space Agency
      A new collaboration between ESA and Schiphol Airport in the Netherlands has got passengers thinking about space. Digital screens throughout the airport featuring stunning  satellite images of Earth have been stopping travellers in their tracks. That's because these pictures from space are part of a fun Where on Earth? travel quiz.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Flight Opportunities program sent two university payloads on suborbital flight tests onboard Virgin Galactic’s VSS Unity on June 8 when it launched from Spaceport America in Las Cruces, New Mexico.
      The payloads carrying scientific research from University of California, Berkeley and Purdue University in West Lafayette, Indiana, align with critical technology needs that NASA has identified in pursuit of the agency’s space commerce and exploration goals. The payload from UC Berkeley, studied a new type of 3D printing and the payload from Purdue studied how sloshing of liquid propellant affects spacecraft direction.
      The need to print building materials in space without having to transport them will be critical in the coming years as humans live and work in space for longer durations. Optimizing spacecraft and satellite design will help us increase the rate of scientific discoveries both here on our home planet and on the Moon, Mars, and beyond. 
      “Our program enables researchers to move from the lab to flight test rapidly, and in many cases, multiple flight tests across different commercial vehicles. This allows them the invaluable opportunity to learn from initial tests, implement improvements, and then fly again – or as we like to say, ‘fly, fix, fly,’” said Danielle McCulloch, program manager for Flight Opportunities at NASA’s Armstrong Flight Research Center in Edwards, California.
      Photo credit: Virgin Galactic
      Share
      Details
      Last Updated Jun 11, 2024 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Armstrong Flight Research Center Flight Opportunities Program Space Technology Mission Directorate Explore More
      2 min read Food Safety Program for Space Has Taken Over on Earth
      System created for Apollo astronaut food has become the global standard for hazard prevention
      Article 1 day ago 5 min read NASA’s Laser Relay System Sends Pet Imagery to, from Space Station
      Article 5 days ago 1 min read The First Responder UAS Wireless Data Gatherer Challenge
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Armstrong Space Projects
      View the full article
    • By NASA
      Aurora and airglow are seen from the International Space Station in 2015.Credits: NASA/JSC/ESRS NASA has selected three proposals for concept studies of missions to investigate the complex system of space weather that surrounds our planet and how it’s connected to Earth’s atmosphere.
      The three concepts propose how to enact the DYNAMIC (Dynamical Neutral Atmosphere-Ionosphere Coupling) mission, which was recommended by the 2013 Decadal Survey for Solar and Space Physics. The DYNAMIC mission is designed to study how changes in Earth’s lower atmosphere influence our planet’s upper atmosphere, where space weather like auroras and satellite disruptions are manifested. This knowledge will benefit humanity by helping us understand how space weather can interfere with crucial technology like navigation systems and satellites.
      “Earth and space are an interconnected system that reaches from the heart of our solar system, the Sun, to the lowest reaches of the atmosphere where we live and extends to the edge of our heliosphere – the boundary of interstellar space,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “While space weather can spark the beautiful auroras across our skies, it also has the potential to cause disruptions for us here on Earth and can be dangerous for our spacecraft and astronauts in space. The DYNAMIC mission will expand our understanding of how Earth itself shapes space weather events that influence our home planet.”
      The DYNAMIC mission is designed to make measurements within Earth’s upper atmosphere between about 50-125 miles (80-200 kilometers) in altitude. With multiple spacecraft, DYNAMIC’s simultaneous observations from different locations can give scientists a more complete picture of how waves propagate upwards through this part of the atmosphere.
      NASA’s fiscal year 2023 appropriation directed NASA to initiate this first phase of study. As the first step of a two-step selection process, each proposal will receive $2 million for a concept study. NASA solicited missions with a cost cap of $250 million, which does not include the launch. The studies will last nine months.
      The selected concept teams are:
      University of Colorado, Boulder, led by principal investigator Tomoko Matsuo Key partners include Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland; NASA’s Jet Propulsion Laboratory in Southern California; and Massachusetts Institute of Technology’s Haystack Observatory in Westford, Massachusetts.
      University of Colorado, Boulder, led by principal investigator Aimee Merkel Key partners include BAE Systems in Westminster, Colorado, and the Naval Research Laboratory in Washington.
      Virginia Polytechnic Institute and State University, led by principal investigator Scott Bailey Key partners include Southwest Research Institute in San Antonio, Texas, Space Dynamics Laboratory in Logan, Utah, Global Atmospheric Technologies and Sciences in Newport News, Virginia, and Computational Physics, Inc. in Boulder, Colorado.
      For more information on NASA heliophysics missions, visit:
      https://science.nasa.gov/heliophysics
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1600
      karen.fox@nasa.gov
      Sarah Frazier
      NASA’s Goddard Space Flight Center
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Jun 11, 2024 LocationNASA Headquarters Related Terms
      Space Weather Earth's Atmosphere Heliophysics Science & Research Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...