Jump to content

Swarming Proxima Centauri: Coherent Picospacecraft Swarms Over Interstellar Distances


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Labeled diagram of the Swarming Proxima Centauri
Graphic depiction of Swarming Proxima Centauri: Coherent Picospacecraft Swarms Over Interstellar Distances
Thomas Eubanks

Thomas Eubanks
Space Initiatives, Inc.

Tiny gram-scale interstellar probes pushed by laser light are likely to be the only technology capable of reaching another star this century. We presuppose availability by mid-century of a laser beamer powerful enough (~100-GW) to boost a few grams to relativistic speed, lasersails robust enough to survive launch, and terrestrial light buckets (~1-sq.km) big enough to catch our optical signals. Then our proposed representative mission, around the third quarter of this century, is to fly by our nearest neighbor, the potentially habitable world Proxima b, with a large autonomous swarm of 1000s of tiny probes.

Given extreme constraints on launch mass (grams), onboard power (milliwatts), and coms aperture (centimeters to meters), our team determined in our work over the last 3 years that only a large swarm of many probes acting in unison can generate an optical signal strong enough to cross the immense distance back to Earth. The 8-year round-trip time lag eliminates any practical control by Earth, therefore the swarm must possess an extraordinary degree of autonomy, for example, in order to prioritize which data is returned to Earth. Thus, the reader will see that coordinating the swarming of individuals into an effective whole is the dominant challenge for our representative mission to Proxima Centauri b. Coordination in turn rests on establishing a mesh network via low-power optical links and synchronizing probes’ on-board clocks with Earth and with each other to support accurate position-navigation-timing (PNT).

Our representative mission begins with a long string of probes launched one at a time to ~0.2c. After launch, the drive laser is used for signaling and clock synchronization, providing a continual time signal like a metronome. Initial boost is modulated so the tail of the string catches up with the head (“time on target”). Exploiting drag imparted by the interstellar medium (“velocity on target”) over the 20-year cruise keeps the group together once assembled. An initial string 100s to 1000s of AU long dynamically coalesces itself over time into a lens-shaped mesh network #100,000 km across, sufficient to account for ephemeris errors at Proxima, ensuring at least some probes pass close to the target.

A swarm whose members are in known spatial positions relative to each other, having state-of-the-art microminiaturized clocks to keep synchrony, can utilize its entire population to communicate with Earth, periodically building up a single short but extremely bright contemporaneous laser pulse from all of them. Operational coherence means each probe sends the same data but adjusts its emission time according to its relative position, such that all pulses arrive simultaneously at the receiving arrays on Earth. This effectively multiplies the power from any one probe by the number N of probes in the swarm, providing orders of magnitude greater data return.

A swarm would tolerate significant attrition en route, mitigating the risk of “putting all your eggs in one basket,” and enabling close observation of Proxima b from multiple vantage points. Fortunately, we don’t have to wait until mid-century to make practical progress – we can explore and test swarming techniques now in a simulated environment, which is what we propose to do in this work. We anticipate our innovations would have a profound effect on space exploration, complementing existing techniques and enabling entirely new types of missions, for example picospacecraft swarms covering all of cislunar space, or instrumenting an entire planetary magnetosphere. Well before mid-century we foresee a number of such missions, starting in Earth or lunar orbit, but in time extending deep into the outer Solar system. For example, such a swarm could explore the rapidly receding interstellar object 1I/’Oumuamua or the solar gravitational lens. These would both be precursors to the ultimate interstellar mission, but also scientifically valuable in their own right.

2024 Phase I Selection

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Saharan dust over the Strait of Messina View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions.  
      The campaign supports the NASA Student Airborne Research Program for undergraduate interns.
      Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta) The East Coast flights will take place from June 17-26. Researchers and students will fly multiple times each week in Dynamic Aviation’s King Air B200 aircraft at an altitude of 1,000 feet over Baltimore and Philadelphia as well as Norfolk, Hampton, Hopewell, and Richmond in Virginia. Meanwhile, a NASA P-3 aircraft based out of NASA’s Wallops Flight Facility in Virginia will fly over the same East Coast locations to collect different measurements.
      The West Coast flights will occur from June 29 – July 2. During the period, those same aircraft will conduct similar operations over Los Angeles, Imperial Valley, and Tulare Basin in California.
      The research aircraft will fly at lower altitudes than most commercial planes and will conduct maneuvers including vertical spirals from 1,000 to 10,000 feet, circling over power plants, landfills, and urban areas. They will also occasionally conduct “missed approaches” at local airports, where the aircraft will perform a low-level flyby over a runway to collect samples close to the surface.
      The aircraft carry instruments that will collect data on a range of greenhouse gases including carbon dioxide and methane, as well as air pollutants such as nitrogen dioxide, formaldehyde, and ozone. One purpose of this campaign is to validate space-based measurements observed by the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. Launched on a commercial satellite in April 2023, the TEMPO instrument provides hourly daytime measurements of air pollutants across the United States, northern Mexico, and southern Canada.
      “The goal is that this data we collect will feed into policy decisions that affect air quality and climate in the region,” said Glenn Wolfe, a research scientist and the principal investigator for the campaign at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The B-200 aircraft is owned by Dynamics Aviation, an aircraft company contracted by NASA.
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Tayler Gilmore
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jun 14, 2024 EditorJennifer R. MarderContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Tropospheric Emissions: Monitoring of Pollution (TEMPO) Wallops Flight Facility Explore More
      5 min read Surf, Turf, Above Earth: Students Participate in NASA Field Research
      Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists,…
      Article 10 months ago 10 min read A Tale of Three Pollutants
      Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A…
      Article 8 months ago 4 min read NASA Scientists Take to the Seas to Study Air Quality
      Article 1 week ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Food for the Apollo astronauts was not always especially appealing, but thanks to the protocol NASA and Pillsbury came up with, known as the Hazard Analysis and Critical Control Point (HAACP) system, it was always safe.Credit: NASA Countless NASA technologies turn up in our everyday lives, but one of the space agency’s most important contributions to modern society isn’t a technology at all – it’s the methodology that ensures the safety of the food we eat. Today the safety procedures and regulations for most of the food produced around the world are based on a system NASA created to guarantee safe food for Apollo astronauts journeying to the Moon. 

      For the Gemini missions, NASA and partner Pillsbury tested the food they were producing at the Manned Spacecraft Center, now Johnson Space Center in Houston, and destroyed entire batches when irregularities were found, a process similar to industry practices of the day. In response to agencywide guidelines from the Apollo Program Office aimed at ensuring the reliability of all critical systems, they altered that method for the Apollo missions. 

      They focused on identifying any points in the production process where hazards could be introduced, establishing procedures to eliminate or control each of those hazards, and then monitoring each of those points regularly. And they required extensive documentation of all this work. This became the foundation for the Hazard Analysis and Critical Control Point (HACCP) system. 
      The Apollo missions were humans’ longest and farthest voyages in space, so food for the astronauts had to be guaranteed safe for consumption hundreds of thousands of miles from any medical facility. Credit: NASA
      Howard Bauman, the microbiologist leading Pillsbury’s Apollo work, convinced his company to adopt the approach, and he became the leading advocate for its adoption across the food industry. That gradual process took decades, starting with the regulation of certain canned foods in the 1970s and culminating in the 2011 Food Safety Modernization Act, which mandated HACCP-like requirements across all food producers regulated by the U.S. Food and Drug Administration. By then, the U.S. Department of Agriculture was managing HACCP requirements for meat and poultry, while Canada and much of Europe had also put similar rules in place. 

      The standards also apply to any outside producers who want to export food into a country that requires HACCP, effectively spreading them across the globe.
      Read More Share
      Details
      Last Updated Jun 10, 2024 Related Terms
      Spinoffs Technology Transfer Technology Transfer & Spinoffs Explore More
      2 min read New Energy Source Powers Subsea Robots Indefinitely
      Power modules driven by ocean temperatures save money, reduce pollution
      Article 6 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle
      NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more.
      Article 2 weeks ago 2 min read Tech Today: From Spacesuits to Racing Suits
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      The Apollo Program
      Astronauts
      View the full article
    • By NASA
      Comicpalooza, the largest annual pop culture festival in the southern United States, is home to thousands of comic book, science, anime, and gaming fanatics in Houston. Guests have the opportunity to celebrate their passions through a variety of entertainment, panels, and meet and greets.

      NASA’s Johnson Space Center has participated in Comicpalooza’s festivities for the last decade, giving attendees the chance to interact with NASA experts and learn more about human space exploration and the agency’s mission.

      Comicpalooza guests listen to a presentation by NASA astronaut Marcos Berríos at the agency’s exclusive booth and stage area.NASA/Robert Markowitz Over 52,000 fans attended this year’s Comicpalooza, held May 24-26 at Houston’s George R. Brown Convention Center. NASA shared with them the exhilarating future of the Artemis campaign that will take humans further in space exploration than ever before, plans for human exploration of the Moon and Mars, and showcased innovative spacesuits, lunar terrain vehicles, and spacewalk tools. Fans also had an opportunity to meet and take photos with NASA astronaut Marcos Berríos.
      NASA astronaut Marcos Berríos talks about his journey to becoming an astronaut and experiences to date during a presentation at 2024 Comicpalooza. NASA/Robert Markowitz The NASA exhibit featured immersive experiences with the Extravehicular Activity and Human Surface Mobility Program; Exploration Architecture, Integration, and Science Directorate; Human Health and Performance Directorate; and STEM engagement programs. These unique exhibits provided guests with insight into the exciting opportunities and discoveries ahead for human spaceflight. NASA’s presence at Comicpalooza also caught the attention of legendary Hollywood actor Christopher Lloyd, who met NASA officials and participated in a tour of Johnson Space Center after the event concluded.
      Johnson Space Center volunteers and NASA experts who led interactive exhibits and panel discussions as part of the agency’s presence at 2024 Comicpalooza.NASA/Robert Markowitz NASA’s exclusive Comicpalooza stage featured 13 unique panels and discussions from agency experts, programs, and Berríos. These panels included:
      The Development of Lunar Base Camp: NASA scientists discussed how future robotic and human explorers will put in place infrastructure for a long-term sustainable presence on the Moon. Driving on the Moon One Day: A discussion about the latest technology and partnerships that will develop the next mobility systems on the Moon. Another One Bites the Dust: Lunar Dust, Hardware Damage, and Why It Matters on the Moon: Lunar dust mitigation engineers and scientists talked about some of the risks of working on the Moon, what happened during Apollo, and what they plan to do about hardware damage, which threatens their efforts to keep astronauts safe and ensure mission success. Meet an Astronaut: NASA astronaut Marcos Berríos hosted a panel about his journey to becoming an astronaut, what he is doing at NASA during his training period, and what is next for him in the future. A Q&A session followed the presentation and guests had the opportunity to learn more about Marcos. Why It’s Hard to get to Mars: A discussion on why it is so difficult to get to the “Red Planet” and what technologies and strategies NASA is developing to accomplish this goal. Landing on the Moon: A panel onwhy landing on the Moon remains a challenge and what the future looks like for additional lunar landings and activities. International Space Station Mimic: Engineers and educators talked about a 3D printed, robotic model that syncs to live telemetry streaming from the real International Space Station in real-time. My NASA Story: An early career perspective on launching a career at Johnson Space Center. Panelists discussed how they got to where they are, and what their jobs look like on a daily basis. Artemis Overview: An overview on the Artemis campaign and its future, which includes landing the first woman and first person of color on the Moon. Through the Artemis missions, NASA will use new technology to study the Moon in new and better ways and prepare for human missions to Mars. Draw Artemis: A panel of experts hosted a “draw along” as they discussed humanity’s voyage back to the Moon, the key role art plays in exploration, and the otherworldly environment of the Moon’s South Pole.
      NASA’s participation in Comicpalooza educates and excites the public about the agency’s mission and inspires people who want to be a part of space exploration in their own unique ways.

      Enjoy more images of the NASA exhibit booth at Comicpalooza below.
      Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Actor Christopher Lloyd visited the Mission Control Center at NASA’s Johnson Space Center following Comicpalooza.NASA Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s not just rising air and water temperatures influencing the decades-long decline of Arctic sea ice. Clouds, aerosols, even the bumps and dips on the ice itself can play a role. To explore how these factors interact and impact sea ice melting, NASA is flying two aircraft equipped with scientific instruments over the Arctic Ocean north of Greenland this summer. The first flights of the field campaign, called ARCSIX (Arctic Radiation Cloud Aerosol Surface Interaction Experiment), successfully began taking measurements on May 28.
      Two NASA aircraft are taking coordinated measurements of clouds, aerosols and sea ice in the Arctic this summer as part of the ARCSIX field campaign. In this image from Thursday, May 30, NASA’s P-3 aircraft takes off from Pituffik Space Base in northwest Greenland behind the agency’s Gulfstream III aircraft.Credit: NASA/Dan Chirica “The ARCSIX mission aims to measure the evolution of the sea ice pack over the course of an entire summer,” said Patrick Taylor, deputy science lead with the campaign from NASA’s Langley Research Center in Hampton, Virginia. “There are many different factors that influence the sea ice. We’re measuring them to determine which were most important to melting ice this summer.”
      On a completely clear day over smooth sea ice, most sunlight would reflect back into the atmosphere, which is one way that sea ice cools the planet. But when the ice has ridges or darker melt ponds — or is dotted with pollutants — it can change the equation, increasing the amount of ice melt. In the atmosphere, cloudy conditions and drifting aerosols also impact the rate of melt.
      “An important goal of ARCSIX is to better understand the surface radiation budget — the energy interacting with the ice and the atmosphere,” said Rachel Tilling, a campaign scientist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      About 75 scientists, instrument operators, and flight crew are participating in ARCSIX’s two segments based out of Pituffik Space Base in northwest Greenland. The first three-week deployment, in May and June of this year, is timed to document the start of the ice melt season. The second deployment will occur in July and August to monitor late summer conditions and the start of the freeze-up period.
      “Scientists from three key disciplines came together for ARCSIX: sea ice surface researchers, aerosol researchers, and cloud researchers,” Tilling said. “Each of us has been working to understand the radiation budget in our specific area, but we’ve brought all three areas together for this campaign.”
      Two aircraft will fly over the Arctic during each deployment. NASA’s P-3 Orion aircraft from the agency’s Wallops Flight Facility in Virginia, will fly below the clouds at times to document the surface properties of the ice and the amount of energy radiating off it. The team will also fly the aircraft through the clouds to sample aerosol particles, cloud optical properties, chemistry, and other atmospheric components.
      A Gulfstream III aircraft, managed by NASA Langley, will fly higher in the atmosphere to observe properties of the tops of the clouds, take profiles of the atmosphere above the ice, and add a perspective similar to that of orbiting satellites.
      The teams will also compare airborne data with satellite data. Satellite instruments like the Multi-angle Imaging Spectroradiometer and the Moderate Resolution Imaging Spectroradiometer will provide additional information about clouds and aerosol particles, while the Ice, Cloud, and land Elevation Satellite 2 will provide insights into the ice topography below both satellites and aircraft.
      The aircraft will fly coordinated routes to take measurements of the atmosphere above ice in three-dimensional space, said Sebastian Schmidt, the mission’s science lead with the University of Colorado Boulder.
      “The area off the northern coast of Greenland can be considered the last bastion of multi-year sea ice, as the Arctic transitions to a seasonally ice-free ocean,” Schmidt said. “By observing here, we will gain insight into cloud-aerosol-sea ice-interaction processes of the ‘old’ and ‘new’ Arctic — all while improving satellite-based remote sensing by comparing what we’re seeing with the airborne and satellite instruments.” 
      By Kate Ramsayer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated May 31, 2024 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Ice & Glaciers Langley Research Center Sea Ice Wallops Flight Facility Explore More
      5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      Article 2 months ago 5 min read Arctic Sea Ice 6th Lowest on Record; Antarctic Sees Record Low Growth
      Arctic sea ice likely reached its annual minimum extent on September 19, 2023, making it…
      Article 8 months ago 4 min read NASA Ice Scientists Take Flight from Greenland to Study Melting Arctic Ice
      Article 2 years ago View the full article
  • Check out these Videos

×
×
  • Create New...