Jump to content

LIFA: Lightweight Fiber-based Antenna for Small Sat-Compatible Radiometry


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist rendition of a satellite above the earth with communication beams.
Graphic depiction of LIFA: Lightweight Fiber-based Antenna for Small Sat-Compatible Radiometry
Beijia Zhang

Zhang, Beijia Zhang, Beijia
Massachusetts Institute of Technology (MIT), Lincoln Lab

Very large space-based RF antennas can be large and expensive to manufacture and deploy. These problems become more challenging for cases when an array of antennas are needed such as for correlation interferometers that provide high spatial resolution of Earth and space. The proposal will specifically examine the potential applicability of novel fiber-based antennas to L-band radiometry for the purpose of generating high resolution soil moisture and sea surface salinity data. Initial estimates indicate that a x10 improvement on resolution may be possible with long fiber-based antenna arrays. Lincoln Laboratory has been investigating the ability to produce large flexible RF antenna arrays embedded in polymer fibers. These lightweight fibers are flexible enough to be coiled and uncoiled, thus facilitating transport and deployment. The metal that forms the antenna structure and other conductive elements is embedded inside a polymer boule that is heated and drawn to form a novel type of fiber. The resulting fiber thus has multiple materials embedded inside for the ability to support sensing capabilities and other functionalities. Thus, this fiber fabrication process may also lead to a cost-effective means to create very large antennas. This work will include analysis of the required antenna performance and the ability of fiber-based antennas to meet those requirements, deployment strategies, satellite specifics, space tolerance of components and materials, a preliminary system-level design, and concept of operations.

2024 Phase I Selection

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Europe’s newest rocket soon launches, taking with it many space missions, each with a unique objective, destination and team at home, cheering them on. Whether launching new satellites to look back and study Earth, peer out to deep space or test important new technologies in orbit, Ariane 6’s first flight will showcase the versatility and flexibility of this impressive, heavy-lift launcher. Read on for all about GRBBeta, then see who else is flying first.
      View the full article
    • By NASA
      This article tells the story of one small American flag fortunate enough to be singled out from a group of one thousand flags just like it and embark on an incredible journey. The other 999 flags likely ended up as gifts, but this one flag had a loftier fate. It wasn’t the first American flag to ride on a crewed spacecraft into space, that one flew aboard Freedom 7 with Alan B. Shepard on May 5, 1961. Or the most famous flag that went into space, the Stars and Stripes planted on the Moon by Apollo 11 astronauts Neil A. Armstrong and Edwin E. “Buzz” Aldrin on July 20, 1969, holds that honor. Other American flags have even flown on spacecraft not just to other planets but out of the solar system entirely. And tens of thousands of other small flags have thundered into space aboard space shuttles and returned to Earth for distribution around the world. So what makes this one small flag, known as the Legacy Flag, so special?

      Left: Launch of space shuttle Columbia on the STS-1 mission, April 12, 1981. Right: Landing of Columbia, April 14, 1981.
      Space shuttle Columbia first lifted off from NASA’s Kennedy Space Center (KSC) in Florida on April 12, 1981, to usher in a new era of reusable crewed space transportation. It carried not only its two pilots, John W. Young and Robert L. Crippen, but also the Official Flight Kit (OFK), stowed away in the lockers in the shuttle’s middeck, along with food, clothing and other supplies. Many of the OFK items, including 1,000 8-by-12-inch American flags, were destined for distribution after the mission to commemorate its historic significance. Once they returned to Earth and workers removed them from the shuttle’s middeck, NASA distributed many of the flags to various people and organizations. But some remained and ended up in storage at NASA’s Johnson Space Center (JSC) in Houston. As the shuttle program progressed over the next 30 years, the number of flags in storage dwindled as additional recipients were identified. Finally, in 2011 it was time for the last shuttle mission, STS-135, and NASA felt it a fitting tribute to refly one of the flags from STS-1 on the final flight. Since STS-135 delivered supplies to the International Space Station, the flag would remain on board until the next time an American spacecraft carrying American astronauts launched from American soil arrived at the station. At the time, no one knew exactly how long that would take.

      Left: Launch of STS-135, July 8, 2011. Right: The crew of STS-135 pose with the Legacy Flag on the flight deck of Atlantis.
      On July 8, 2011, space shuttle Atlantis lifted off to begin STS-135, the final mission of the program with Christopher J. Ferguson, Douglas G. Hurley, Sandra H. Magnus, and Rex J. Walheim aboard, and two days later they docked with the station. The six international crewmembers of Expedition 28 welcomed them aboard. The long-term plan for the little flag was publicly revealed during a live TV session between the crew and President Barack H. Obama. “I also understand that Atlantis brought a unique American flag up to the station,” said President Obama. Shuttle Commander Ferguson explained that before their departure they would present the flag to the crew aboard the station, where “it will hopefully maintain a position of honor until the next vehicle launched from U.S. soil brings U.S. astronauts up to dock with the space station.”

      Left: The crews of STS-135 and Expedition 28 pose with the Legacy Flag. Right: The crews of STS-135 and Expedition 28 place the Legacy Flag on the hatch of the Harmony module.
      On July 18, near the end of the docked phase of STS-135, during a televised ceremony the crews placed the flag, flanked by the patches of the first and last space shuttle missions, on the forward hatch of the Harmony module, from where Atlantis would soon depart and where the next American crewed spacecraft would dock. After the shuttle and its crew left, the flag remained on the hatch for a while, but as time passed, onboard crews needed to use that area for stowage and so they moved it to a nearby wall for safekeeping. In 2015, to further safeguard the flag against damage or loss, Mission Control asked the onboard crew to place it in a stowage bag. As sometimes happens with stowage bags, this one moved around and ended up in a different module of the station. Three years later, during a general inventory of stowage bags, the crew found the flag and placed in a Ziploc bag with the words “Flown on STS-1 & STS-135. Only to be removed by crew launching from KSC” attached.

      Left: The Legacy Flag, placed between the STS-1 and STS-135 patches on the Harmony module’s forward hatch as Atlantis prepared to depart. Middle: In May 2014, during Expedition 40, astronauts mounted the flag on a wall near the Harmony module’s hatch to allow that area to be used for stowage. Right: The Legacy Flag in July 2018 during Expedition 56, placed in a Ziploc bag for safety.
      On May 30, 2020, a Falcon 9 rocket blasted off from KSC’s Launch Pad 39A, the same pad used for STS-1 and STS-135, carrying SpaceX’s Crew Dragon capsule on its Demo 2 mission. Aboard were Doug Hurley, who flew aboard the last shuttle mission, and Robert L. Behnken, the first American astronauts launched aboard an American spacecraft from American soil since STS-135. Once in orbit, Hurley and Behnken announced that they had christened their spacecraft Endeavour. The next day, Endeavour docked with the station, and Hurley and Behnken came aboard, welcomed by Expedition 63 Commander NASA astronaut Christopher J. Cassidy and Flight Engineers Anatoli A. Ivanishin and Ivan V.  Vagner representing Roscosmos. Mounted on the open hatch as they floated aboard the station was our intrepid little flag, in space for nine years, and 39 years after making its first trip into space. After their arrival, Cassidy, Hurley and Behnken held a press conference and proudly displayed the flag and how it stood as a symbol of the return of American launch capability. The flag’s nine-year journey came to end when Hurley and Behnken brought it back to Earth on Aug. 2, 2020. The flag first went on display at SpaceX’s facility in Hawthorne, California, then toured the country for a few months, making its final public appearance at the World Petroleum Congress in Houston in December 2021. Currently in storage at JSC, the Legacy Flag will fly again, possibly on even more distant journeys.

      Left: The Harmony module’s forward hatch bearing the Legacy Flag, opened to welcome the SpaceX Demo 2 crew. Middle: NASA astronauts Robert L. Behnken, left, Douglas G. Hurley (holding the Legacy Flag), and Christopher J. Cassidy during a press conference. Right: The Legacy Flag in its display case after its return to Earth.
      During its time on the space station, the Legacy Flag saw 100 visitors from many nationalities come and go, some of them more than once. Most stayed six months, some stayed longer, up to almost one year. A few made short visits of about a week. During all that time, the space station remained a busy beehive of activity, with hundreds of experiments conducted by the international crews. Many astronauts ventured outside, to repair equipment, place new experiments out, or bring older ones back inside. And in that time, the flag traveled more than 1.3 billion miles. 
      Explore More
      10 min read 55 Years Ago: Manned Orbiting Laboratory Cancellation
      Article 2 days ago 15 min read 55 Years Ago: Star Trek Final Episode Airs, Relationship with NASA Endures
      Article 1 week ago 6 min read 25 Years Ago: STS-96 Resupplies the Space Station
      Article 2 weeks ago View the full article
    • By NASA
      4 Min Read Flag Day – One Small Flag’s Incredible Journey
      This article is for students grades 5-8.
      This story tells the tale of one small American flag fortunate enough to embark on an incredible journey. It wasn’t the first flag to ride into space, or the most famous flag that went into space — that honor probably goes to the Stars and Stripes planted on the Moon by the Apollo 11 astronauts in 1969. So what makes this one little flag so special? Let’s let the flag tell its own story.
      Here I am launching into space aboard the space shuttle Columbia for the first time in 1981.Credits: NASA Workers packed me away with many other small flags like me – there must have been a thousand of us – just 8-by-12-inch Stars and Stripes, in a locker aboard space shuttle Columbia. We took off on STS-1, the shuttle’s very first mission in 1981, from NASA’s Kennedy Space Center (KSC) in Florida. Although we couldn’t see anything, we could feel the vibrations and noises of the liftoff, the ride a bit rough for the first two minutes, then much smoother until we reached space. Once in orbit, we could hear the two astronauts working as they tested the new spaceship.
      And two days later, I’m back on Earth!Credits: NASA Then after just two days, we came home, making a smooth landing in California. Thirty years later, someone had the idea to send me into space again, this time on the very last space shuttle mission, STS-135. And this time I would be making a much longer trip, since I would be left aboard the International Space Station.
      Here I am starting my second trip into space in 2011, this time aboard the space shuttle Atlantis.Credits: NASA So I roared off into space again in 2011, this time aboard space shuttle Atlantis. I had four friends to keep me company, Chris Ferguson, Doug Hurley, Sandy Magnus, and Rex Walheim. They actually took me out of my locker, and we all took pictures together. That made me feel really special.
      Here I am posing with my friends Doug, Chris, Sandy, and Rex aboard Atlantis.Credits: NASA But there was more in store for me: Two days after our launch we arrived at the space station; wow, what a huge place this was! I met even more astronauts here, from America, Russia, and Japan! President Barack Obama called to congratulate the crews, and I heard him talking about me and what a unique American flag I was. I would have a position of honor aboard the station until the next team of Americans arrived aboard an American spacecraft launched from American soil. I couldn’t have been more proud! 
      Here I am with all 10 crewmembers aboard the station, from America, Russia, and Japan.Credits: NASA And here I am, taking my position of honor on the space station’s hatch.Credits :NASA The astronauts made a TV show and I was the star. They placed me in my position of honor on the forward hatch of the space station, between the patches of the first and last space shuttle missions. I stayed on the hatch for a while, but as no spacecraft arrived through that portal for a few years, the crews needed the space to store their stuff.
      Here I am between the STS-1 and STS-135 patches on the station’s forward hatch.Credits: NASA Worried I might be injured, they slipped me into a plastic cover and placed me on a wall near the hatch. People grew concerned about me and thought it would be good to put me away in storage for safekeeping, at least temporarily, so that’s what happened. And while I waited, the bag I was in got moved around, and after a few years, people weren’t really sure where I was. But luckily, they found me and placed me in a safer bag and wrote these words, “Flown on STS-1 & STS-135. Only to be removed by crew launching from KSC,” to let everyone know I was that special flag.
      Later I was moved to a nearby wall.Credits: NASA Later still, placed in a Ziploc bag for safety, with the words to let everyone know I was that special flag.Credits: NASA Two more years went by, and I began to hear rumblings that I might be needed again. My newest friend on the space station, Chris Cassidy, cleared out the area around the hatch. Was I about to resume my position of honor? Excitement was building, and Chris and his two crewmates, Anatoli Ivanishin and Ivan Vagner prepared the station for its newest arrivals. Apparently two Americans had launched aboard an American spacecraft from American soil, the first time in nine years.
      Here I am welcoming the SpaceX Demo 2 crew.Credits: NASA Doug is holding me up to the camera during a press conference.Credits: NASA My long wait was over! Chris placed me on the now-open hatch, and first Bob Behnken and then Doug Hurley, my old friend from Atlantis, floated inside the station! I was there to welcome them aboard! Once again, I starred in another TV show. After returning to Earth with Doug and Bob – I’m told I had traveled 1.3 billion miles – I went on display in several places. And now I hear rumblings of another possibly more distant journey awaiting me. We’ll just have to see.
      Here I am all dressed up for public display after my return to Earth.Credits: NASA Share
      Details
      Last Updated Jun 13, 2024 Related Terms
      Learning Resources For Kids and Students Grades 5 – 8 Keep Exploring Discover More STEM Topics From NASA
      For Students Grades 5-8
      Join Artemis
      NASA Interactives
      Learning Resources
      View the full article
    • By NASA
      NASA logo. Credit: NASA NASA will award funding to nearly 250 small business teams to develop new technologies to address agency priorities, such as carbon neutrality and energy storage for various applications in space and on Earth. The new awards from NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program invest in a diverse portfolio of American small businesses and research institutions to support NASA’s future missions.
      About 34% of the companies selected are first-time NASA SBIR/STTR recipients. Each proposal team will receive $150,000 to establish the merit and feasibility of their innovations for a total agency investment of $44.85 million.
      “NASA is proud to continue its commitment to the creation and elevation of technologies that blaze trails in space and on Earth,” said Jenn Gustetic, director of early-stage innovation and partnerships for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington.
      The Phase I SBIR contract awards small businesses and lasts for six months, while the Phase I STTR contract awards small businesses in partnership with a research institution and lasts for 13 months. In total, 209 small businesses received SBIR awards, and 39 small businesses and their research institution partners – including eight Minority Serving Institutions – received STTR awards. The complete list of this year’s SBIR and STTR awardees are available online.
      One of the firms working to address carbon neutrality is Exquadrum Inc., a minority-owned small business in Victorville, California. Exquadrum’s proposed technology will contribute to NASA’s effort to make the U.S. carbon neutral by 2050. The proposed technology offers higher energy conversion efficiency with no emission of pollutants. The propulsion system is compact and lightweight compared to current systems. The fuel and its products are safe to handle, and the propulsion system is reliable under extreme weather conditions. The propulsion system has the potential to aid the exploration of planets that have atmospheres like that of Mars.
      “Through our partnership with, and investment in, small businesses and research institutions, NASA continues to forge a crucial path in the development of technologies that have a concerted focus on long-term commercial uses,” said Jason L. Kessler, program executive for NASA’s SBIR/STTR program. “Our ongoing support of diverse innovators from throughout the country will continue to foster an ecosystem that will nurture the intrapreneurial spirit to drive innovation and exciting results.”
      The new SBIR/STTR investments will impact 41 states, including a team with Energized Composite Technologies, in Orlando, Florida, partnering with the University of Central Florida. Together, they will explore using carbon fiber-reinforced thermoplastic composite structural batteries for repurposable space applications, offering a multifunctional solution that integrates structural integrity with energy storage capabilities. The proposed structural battery panels integrate energy storage functionality into the structural components of the spacecraft, minimizing the additional space required for electrical storage while maximizing the available volume for payload. The structural battery panels used for the space vehicle could be repurposed after landing because the thermoplastic-based structural panels can be reshaped for other uses.
      NASA selected Phase I proposals to receive funding by judging their technical merit and responsiveness to known challenges. Based on their progress during Phase I, companies may submit proposals for up to $850,000 in Phase II funding to develop a prototype and subsequent SBIR/STTR Post Phase II opportunities.
      To learn more about NASA’s SBIR/STTR program and apply to future opportunities, visit:
      https://sbir.nasa.gov/
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      jasmine.s.hopkins@nasa.gov
      View the full article
    • By NASA
      Dennis Gallagher (ST13) reports receiving on 3/1/24, one gram of Apollo 16 regolith of 1 mm and smaller dust regolith from the Johnson Space Center (JSC) Apollo Archive. The material request is motivated by the planned NASA Artemis missions to the Moon’s south polar region where the surface is generally expected to be like that found at the Apollo 16 landing site. Electrostatic charging driven by the solar wind and ultraviolet light from the Sun is known to be important for small particles of lunar regolith that must be understood for potentially dust coated struts of the Human Lander System (HLS) that will cycle between the surface and Gateway. Presently, the charging properties of individual dust grains are not adequately characterized for this purpose. The measurements to be obtained by the MSFC Dusty Plasma Laboratory using Apollo 16 dust are intended to fill this knowledge gap are being obtained in support of the Gateway Cis-Lunar Dust Transfer Modeling and Analysis Task and HLS at JSC.
      The surface of the Moon.View the full article
  • Check out these Videos

×
×
  • Create New...