Jump to content

NASA’s Hubble Observes Exoplanet Atmosphere Changing Over 3 Years


NASA

Recommended Posts

  • Publishers

4 min read

NASA’s Hubble Observes Exoplanet Atmosphere Changing Over 3 Years

By combining several years of observations from NASA’s Hubble Space Telescope along with conducting computer modelling, astronomers have found evidence for massive cyclones and other dynamic weather activity swirling on a hot, Jupiter-sized planet 880 light-years away.

The planet, called WASP-121 b, is not habitable. But this result is an important early step in studying weather patterns on distant worlds, and perhaps eventually finding potentially habitable exoplanets with stable, long-term climates.

A large, yellow-white star fills the center of the image. A
This is an artist’s concept of the exoplanet WASP-121 b, also known as Tylos. The exoplanet’s appearance is based on Hubble simulation data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet; marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance of Earth to the Sun, placing it on the verge of being ripped apart by the star’s tidal forces. The powerful gravitational forces have altered the planet’s shape.

An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018 and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere.

NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble)

For the past few decades, detailed telescopic and spacecraft observations of neighboring planets in our solar system show that their turbulent atmospheres are not static but constantly changing, just like weather on Earth. This variability should also apply to planets around other stars, too. But it takes lots of detailed observing and computational modelling to actually measure such changes.

To make the discovery, an international team of astronomers assembled and reprocessed Hubble observations of WASP-121 b taken in 2016, 2018, and 2019.

They found that the planet has a dynamic atmosphere, changing over time. The team used sophisticated modelling techniques to demonstrate that these dramatic temporal variations could be explained by weather patterns in the exoplanet’s atmosphere.

The team found that WASP-121 b’s atmosphere shows notable differences between observations. Most dramatically, there could be massive weather fronts, storms, and massive cyclones that are repeatedly created and destroyed due to the large temperature difference between the star-facing side and dark side of the exoplanet. They also detected an apparent offset between the exoplanet’s hottest region and the point on the planet closest to the star, as well as variability in the chemical composition of the exoplanet’s atmosphere (as measured via spectroscopy).

The team reached these conclusions by using computational models to help explain observed changes in the exoplanet’s atmosphere. “The remarkable details of our exoplanet atmosphere simulations allows us to accurately model the weather on ultra-hot planets like WASP-121 b,” explained Jack Skinner, a postdoctoral fellow at the California Institute of Technology in Pasadena, California, and co-leader of this study. “Here we make a significant step forward by combining observational constraints with atmosphere simulations to understand the time-varying weather on these planets.”


This visualization shows the temperature forecast spanning 130 exoplanet-days, across sunrise, noon, sunset, and midnight for the exoplanet WASP-121 b, also known as Tylos. The brighter yellow regions depict areas in the day side of the exoplanet where temperatures soar well above 2,100 degrees Kelvin (3,320 degrees Fahrenheit); due to the close proximity to its host star, roughly 2.6% of the distance of Earth to the Sun. Due to the extreme temperature difference between the day and night sides, astronomers suspect evaporated iron and other heavy metals escaping into the higher layers of atmosphere on the day side partially fall back onto lower layers, making it rain iron at night. Some of the heavy metals also escape the planet’s gravity from the upper atmosphere.

It only takes WASP-121 b roughly 31 hours to complete an orbit around its star.

An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here.

The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble)

“This is a hugely exciting result as we move forward for observing weather patterns on exoplanets,” said one of the principal investigators of the team, Quentin Changeat, a European Space Agency Research Fellow at the Space Telescope Science Institute in Baltimore, Maryland. “Studying exoplanets’ weather is vital to understanding the complexity of exoplanet atmospheres on other worlds, especially in the search for exoplanets with habitable conditions.”

WASP-121 b is so close to its parent star that the orbital period is only 1.27 days. This close proximity means that the planet is tidally locked so that the same hemisphere always faces the star, in the same way that our Moon always has the same side pointed at Earth. Daytime temperatures approach 3,450 degrees Fahrenheit (2,150 degrees Kelvin) on the star-facing side of the planet.

The team used four sets of Hubble archival observations of WASP-121 b. The complete data-set included observations of WASP-121 b transiting in front of its star (taken in June 2016); WASP-121 b passing behind its star, also known as a secondary eclipse (taken in November 2016); and the brightness of WASP-121 b as a function of its phase angle to the star (the varying amount of light received at Earth from an exoplanet as it orbits its parent star, similar to our Moon’s phase-cycle). These data were taken in March 2018 and February 2019, respectively.

“The assembled data-set represents a significant amount of observing time for a single planet and is currently the only consistent set of such repeated observations,” said Changeat. The information that we extracted from those observations was used to infer the chemistry, temperature, and clouds of the atmosphere of WASP-121 b at different times. This provided us with an exquisite picture of the planet changing over time.”

Hubble’s capabilities also are evident in the broad expanse of science programs it will enable through its Cycle 31 observations, which began on December 1. About two-thirds of Hubble’s time will be devoted to imaging studies, while the remainder is allotted to spectroscopy studies, like those used for WASP-121 b. More details about Cycle 31 science are in a recent announcement.


This visualization shows the weather patterns on the exoplanet WASP-121 b, also known as Tylos. This video has been slowed to observe the patterns in the exoplanet’s atmosphere in closer detail.

An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here.

The science team’s models found that their results could be explained by quasi-periodic weather patterns: specifically, massive cyclones that are repeatedly created and destroyed due to the huge temperature difference between the star-facing and dark side of the exoplanet. This result represents a significant step forward in potentially observing weather patterns on exoplanets.

The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble)

LEARN MORE:

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

Media Contacts:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, MD

Bethany Downer
ESA/Hubble

Science Contact:

Quentin Changeat
ESA/STScI

Share

Details

Last Updated
Jan 04, 2024
Editor
Andrea Gianopoulos
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Manned Orbiting Laboratory (MOL), a joint classified project of the U.S. Air Force (USAF) and the National Reconnaissance Office (NRO), sought to establish a crewed platform in low Earth orbit to obtain high-resolution photographic imagery of America’s 1960s Cold War adversaries. Approved in 1965, the MOL Program envisioned a series of space stations launched from a new pad in California and placed in low polar Earth orbit. Two-man crews, launching and returning to Earth aboard modified Gemini-B capsules, would work aboard the stations for 30 days at a time. Although the Air Force selected 17 pilots and built prototype hardware, the program faced budget pressures and competition from rapidly advancing technologies in uncrewed reconnaissance capabilities, leading to its cancellation on June 10, 1969.

      Left: Patch of the Manned Orbiting Laboratory (MOL) Program. Middle: Illustration of the MOL as it would have appeared in orbit. Image credit: Courtesy National Air and Space Museum. Right: Space Launch Complex-6 under construction in 1966 at Vandenberg Air Force (now Space Force) Base in California. Image credit: Courtesy National Reconnaissance Office.
      Announced by Defense Secretary Robert S. McNamara in December 1963 and formally approved by President Lyndon B. Johnson in August 1965, the MOL Program envisioned a series of 60-foot-long space stations in low polar Earth orbit, occupied by 2-person crews for 30 days at a time, launching and returning to Earth aboard modified Gemini-B capsules. Externally similar to NASA’s Gemini spacecraft, the MOL version’s major modification involved a hatch cut into the heat shield that allowed the astronauts to internally access the laboratory located behind the spacecraft without the need for a spacewalk. While MOL astronauts would carry out a variety of experiments, a telescope with sophisticated imaging systems for military reconnaissance made up the primary payload in the laboratory. The imaging system, codenamed Dorian and carrying the Keyhole KH-10 designation, included a 72-inch diameter primary mirror designed to provide high resolution images of targets of military interest. To reach their polar orbits, MOLs would launch from Vandenberg Air Force (now Space Force) Base (AFB) in California. Construction of Space Launch Complex-6 (SLC-6) there began in March 1966 to accommodate the Titan-IIIM launch vehicle. The sensitive military nature of MOL resulted in its top-secret classification, not declassified by the NRO until October 2015.

      The three selection groups of Manned Orbiting Laboratory pilots. Left:  Group 1 – Michael J. Adams, Albert H. Crews, John L. Finley, Richard E. Lawyer, Lachlan Macleay, Francis G. Neubeck, James M. Taylor, and Richard H. Truly. Middle: Group 2 – Robert L. Crippen, Robert F. Overmyer, Karol J. Bobko, C. Gordon Fullerton, and Henry W. Hartsfield. Right: Group 3 – Robert T. Herres, Robert H. Lawrence, Donald H. Peterson, and James A. Abrahamson. Image credits: Courtesy U.S. Air Force.
      The USAF selected 17 pilots in three groups for the MOL program. The first group, selected on Nov. 12, 1965, consisted of eight pilots – Michael J. Adams, Albert H. Crews, John L. Finley, Richard E. Lawyer, Lachlan Macleay, Francis G. Neubeck, James M. Taylor, and Richard H. Truly. Adams retired from the MOL program in July 1966 to join the X-15 program. While making his seventh flight, he died in November 1967 when his aircraft crashed. Finley left the program in April 1968, returning to the U.S. Navy. The second group, selected on June 17, 1966, consisted of five pilots – Karol J. “Bo” Bobko, Robert L. Crippen, C. Gordon Fullerton, Henry W. Hartsfield, and Robert F. Overmyer. The third and final group of four pilots, chosen on June 30, 1967, comprised James A. Abrahamson, Robert T. Herres, Robert H. Lawrence, and Donald H. Peterson. Lawrence has the distinction as the first African American selected as an astronaut by any national space program. He died in the crash of an F-104 in December 1967.

      Group photo of 14 of the 15 Manned Orbiting Laboratory pilots still in the program in early 1968 – John L. Finley, front row left, Richard E. Lawyer, James M. Taylor, Albert H. Crews, Francis G. Neubeck, and Richard H. Truly; Robert T. Herres, back row left, James W. Hartsfield, Robert F. Overmyer, C. Gordon Fullerton, Robert L. Crippen, Donald H. Peterson, Karol J. Bobko, and James A. Abrahamson. Michael J. Adams had left the program and died in an X-15 crash, Robert H. Lawrence had died in a F-104 crash, and Lachlan Macleay does not appear for unknown reasons.
      The only space launch in the MOL program occurred on Nov. 3, 1966, when a Titan-IIIC rocket took off from Cape Canaveral Air Force (now Space Force) Station’s Launch Complex 40. The rocket carried a MOL mockup, without the KH-10 imaging payload, and a Gemini-B capsule refurbished after it flew NASA’s uncrewed Gemini 2 suborbital mission in January 1965. This marked the only reflight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. The flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Sailors aboard the U.S.S. La Salle (LPD-3) recovered the Gemini-B capsule near Ascension Island in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. Visitors can view it on display at the Cape Canaveral Space Force Museum. The MOL mockup entered Earth orbit and released three satellites. It also carried a suite of 10 experiments called Manifold, ranging from cell growth studies to tests of new technologies. Although the experiments could have operated for 75 days, the MOL stopped transmitting after 30 days, and decayed from orbit Jan. 9, 1967.

      Left: The only operational launch of the Manned Orbiting Laboratory (MOL) program, a Gemini-B capsule and a MOL mockup atop a Titan-IIIC rocket in 1966. Middle: The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Right: Former MOL and NASA astronaut Robert L. Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top.
      By 1969, the MOL program ran several years behind schedule and significantly over budget, and other than the one test flight had not flown any actual hardware. Although no flight hardware yet existed, aside from the long lead time mirrors for the imaging system, plans in May 1969 called for four 30-day MOL missions at 6-month intervals starting in January 1972. However, technology for uncrewed military reconnaissance had advanced to the stage that the KH-10 system proposed for MOL had reached obsolescence. Following a review, the new administration of President Richard M. Nixon, faced with competing priorities for the federal budget, announced the cancellation of the MOL program on June 10, 1969. 

      Left: Prototypes of elements of the Manned Orbiting Laboratory (MOL) under construction. Middle: Medium fidelity mockup of the MOL crew cabin, with suited crew member and the narrow tunnel leading to the Gemini-B capsule. Right: Former MOL and NASA astronaut Robert L. Crippen stands next to the spacesuit developed for the MOL program. Image credits: Courtesy National Reconnaissance Office.
      Although the sudden cancellation came as a shock to those working on the program, some of the personnel involved as well as some of the hardware developed for it, made their way into other agencies and projects. For example, the Air Force had developed a flexible spacesuit required by the MOL pilots to navigate through the narrow tunnel between the Gemini-B capsule and the laboratory – that technology transferred to NASA for future spacesuit development. The waste management system designed for use by MOL pilots flew aboard Skylab. The MOL laboratory simulator and the special computer to operate it also transferred to NASA. The technology developed for the acquisition and tracking system and the mission development simulator for the KH-10 imaging system found its way into NASA’s earth remote sensing program.

      Official NASA photograph of the Group 7 astronauts – Karol J. Bobko, left, C. Gordon Fullerton, Henry W. Hartsfield, Robert L. Crippen, Donald H. Peterson, Richard H. Truly, and Robert F. Overmyer – transfers from the Manned Orbiting Laboratory program.
      After the cancellation of the MOL program, NASA invited the younger (under 35) MOL pilots to join its astronaut corps. Bobko, Crippen, Fullerton, Hartsfield, Overmyer, Peterson, and Truly transferred to NASA on August 14, 1969, as the Group 7 astronaut class. In 1972, Crippen and Bobko participated in the 56-day ground-based Skylab Medical Experiment Altitude Test, a key activity that contributed to Skylab’s success. Although it took nearly 12 years for the first of the MOL transfers to make it to orbit, all of them went on to fly on the space shuttle in the 1980s, six of them as commanders. In an ironic twist, NASA assigned Crippen to command the first space shuttle polar orbiting mission (STS-62A) that would have launched from the SLC-6 pad at Vandenberg in 1986. But after the January 1986 Challenger accident, the Air Force reduced its reliance on the shuttle as a launch platform and cancelled the mission. Truly served as NASA administrator from 1989 to 1992 and Crippen as the director of NASA’s Kennedy Space Center in Florida from 1992 to 1995. NASA hired Crews, not as an astronaut but as a pilot, and he stayed with the agency until 1994. Of the MOL astronauts that did not meet NASA’s age limit requirement, many went on to have stellar careers. Abrahamson joined NASA in 1981 as associate administrator for manned space flight, then went on to lead the Strategic Defense Initiative from 1984 to 1989. Herres served as vice chairman of the Joint Chiefs of Staff from 1987 to 1990.

      Left: Space shuttle Enterprise during fit checks at the SLC-6 launch facility at Vandenberg Air Force (now Space Force) Base in 1985. Middle: Athena rocket awaits launch on SLC-6 in 1997. Right: Delta-IV Heavy lifts off from SLC-6 in 2011.
      Following cancellation of the MOL program, the Air Force mothballed the nearly completed SLC-6 at Vandenberg. In 1972, the Air Force and NASA began looking at SLC-6 as a pad to launch space shuttles with payloads requiring polar orbits, with the decision made in 1975. Workers began converting SLC-6 to launch the space shuttle in 1979. Although space shuttle Enterprise used SLC-6 for fit checks in 1985, the Challenger accident the following year caused the Air Force to cancel plans to use the space shuttle to launch polar orbiting satellites, and they once again mothballed the pad. Following modifications, small Athena rockets used the pad between 1995 and 1999, the first launches from the facility after 30 years of development and modifications. Another conversion begun in 1999 modified SLC-6 to launch Delta-IV and Delta-IV Heavy rockets starting in 2006, with the last flight in 2022. SpaceX leased SLC-6 in April 2023 to begin launches of Falcon 9 and Falcon Heavy rockets in 2025.

      Left: Schematic of the optical system of the Manned Orbiting Laboratory (MOL), including the 72-inch primary mirror at right. Image credit: courtesy: NRO. Right: The Multiple Mirror Telescope Observatory on Mount Hopkins, Arizona, in its original six-mirror configuration using mirrors from the MOL Program. Image credit: Courtesy Multiple Mirror Telescope.
      The NRO transferred six surplus 72-inch mirrors from the cancelled KH-10 program to the Smithsonian Astrophysical Observatory for the Multiple-Mirror Telescope (MMT) it built in association with the University of Arizona, located on Mount Hopkins, Arizona. By combining the light of the six mirrors, they achieved an effective light collecting area of a single 177-inch telescope mirror. The MMT operated in this six-mirror configuration for nearly 20 years before a single 215-inch mirror replaced them.
      Read Abrahamson’s, Bobko’s, Crew’s, Crippen’s, Fullerton’s, Hartsfield’s, Peterson’s, and Truly’s recollections of the MOL program in their oral history interviews with the JSC History Office. In 2019, the NRO held a panel discussion with MOL pilots Abrahamson, Bobko, Macleay, Crews, and Crippen, by then free to talk about their experiences during the now declassified program.
      Explore More
      15 min read 55 Years Ago: Star Trek Final Episode Airs, Relationship with NASA Endures
      Article 7 days ago 6 min read 25 Years Ago: STS-96 Resupplies the Space Station
      Article 2 weeks ago 6 min read 15 Years Ago: First Time all Partners Represented aboard the International Space Station
      Article 2 weeks ago View the full article
    • By NASA
      4 min read
      Hubble Finds Surprises Around a Star That Erupted 40 Years Ago
      This artist’s concept shows the nova system HM Sagittae (HM Sge), where a white dwarf star is pulling material from its red giant companion. This forms a blazing hot disk around the dwarf, which can unpredictably undergo a spontaneous thermonuclear explosion as the infall of hydrogen from the red giant grows denser and reaches a tipping point. These fireworks between companion stars are fascinating to astronomers by yielding insights into the physics and dynamics of stellar evolution in binary systems. NASA, ESA, Leah Hustak (STScI)
      Download this image

      Astronomers have used new data from NASA’s Hubble Space Telescope and the retired SOFIA (Stratospheric Observatory for Infrared Astronomy) as well as archival data from other missions to revisit one of the strangest binary star systems in our galaxy – 40 years after it burst onto the scene as a bright and long-lived nova. A nova is a star that suddenly increases its brightness tremendously and then fades away to its former obscurity, usually in a few months or years.
      Between April and September 1975, the binary system HM Sagittae (HM Sge) grew 250 times brighter. Even more unusual, it did not rapidly fade away as novae commonly do, but has maintained its luminosity for decades. Recently, observations show that the system has gotten hotter, but paradoxically faded a little.
      HM Sge is a particular kind of symbiotic star where a white dwarf and a bloated, dust-producing giant companion star are in an eccentric orbit around each other, and the white dwarf ingests gas flowing from the giant star. That gas forms a blazing hot disk around the white dwarf, which can unpredictably undergo a spontaneous thermonuclear explosion as the infall of hydrogen from the giant grows denser on the surface until it reaches a tipping point. These fireworks between companion stars fascinate astronomers by yielding insights into the physics and dynamics of stellar evolution in binary systems.
      When I first saw the new data, I went – ‘wow this is what Hubble UV spectroscopy can do!’ – I mean it’s spectacular, really spectacular.
      Ravi Sankrit
      Astronomer
      “In 1975 HM Sge went from being a nondescript star to something all astronomers in the field were looking at, and at some point that flurry of activity slowed down,” said Ravi Sankrit of the Space Telescope Science Institute (STScI) in Baltimore. In 2021, Steven Goldman of STScI, Sankrit and collaborators used instruments on Hubble and SOFIA to see what had changed with HM Sge in the last 30 years at wavelengths of light from the infrared to the ultraviolet (UV).
      The 2021 ultraviolet data from Hubble showed a strong emission line of highly ionized magnesium that was not present in earlier published spectra from 1990. Its presence shows that the estimated temperature of the white dwarf and accretion disk increased from less than 400,000 degrees Fahrenheit in 1989 to greater than 450,000 degrees Fahrenheit now. The highly ionized magnesium line is one of many seen in the UV spectrum, which analyzed together will reveal the energetics of the system, and how it has changed in the last three decades.
      “When I first saw the new data,” Sankrit said, “I went – ‘wow this is what Hubble UV spectroscopy can do!’ – I mean it’s spectacular, really spectacular.”
      A Hubble Space Telescope image of the symbiotic star Mira HM Sge. Located 3,400 light-years away in the constellation Sagitta, it consists of a red giant and a white dwarf companion. The stars are too close together to be resolved by Hubble. Material bleeds off the red giant and falls onto the dwarf, making it extremely bright. This system first flared up as a nova in 1975. The red nebulosity is evidence of the stellar wind. The nebula is about one-quarter light-year across. NASA, ESA, Ravi Sankrit (STScI), Steven Goldman (STScI); Image Processing: Joseph DePasquale (STScI)
      Download this image

      With data from NASA’s flying telescope SOFIA, which retired in 2022, the team was able to detect the water, gas, and dust flowing in and around the system. Infrared spectral data shows that the giant star, which produces copious amounts of dust, returned to its normal behavior within only a couple years of the explosion, but also that it has dimmed in recent years, which is another puzzle to be explained.
      With SOFIA astronomers were able to see water moving at around 18 miles per second, which they suspect is the speed of the sizzling accretion disk around the white dwarf. The bridge of gas connecting the giant star to the white dwarf must presently span about 2 billion miles.
      The team has also been working with the AAVSO (American Association of Variable Star Observers), to collaborate with amateur astronomers from around the world who help keep telescopic eyes on HM Sge; their continued monitoring reveals changes that haven’t been seen since its outburst 40 years ago.
      “Symbiotic stars like HM Sge are rare in our galaxy, and witnessing a nova-like explosion is even rarer. This unique event is a treasure for astrophysicists spanning decades,” said Goldman.
      The initial results from the team’s research were published in the Astrophysical Journal, and Sankrit is presenting research focused on the UV spectroscopy at the 244th meeting of the American Astronomical Society in Madison, Wisconsin.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter


      Hubble Views the Dawn of a Sun-like Star


      Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow


      NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Ravi Sankrit
      Space Telescope Science Institute, Baltimore, MD
      Steven Goldman
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Jun 10, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Stars


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Food for the Apollo astronauts was not always especially appealing, but thanks to the protocol NASA and Pillsbury came up with, known as the Hazard Analysis and Critical Control Point (HAACP) system, it was always safe.Credit: NASA Countless NASA technologies turn up in our everyday lives, but one of the space agency’s most important contributions to modern society isn’t a technology at all – it’s the methodology that ensures the safety of the food we eat. Today the safety procedures and regulations for most of the food produced around the world are based on a system NASA created to guarantee safe food for Apollo astronauts journeying to the Moon. 

      For the Gemini missions, NASA and partner Pillsbury tested the food they were producing at the Manned Spacecraft Center, now Johnson Space Center in Houston, and destroyed entire batches when irregularities were found, a process similar to industry practices of the day. In response to agencywide guidelines from the Apollo Program Office aimed at ensuring the reliability of all critical systems, they altered that method for the Apollo missions. 

      They focused on identifying any points in the production process where hazards could be introduced, establishing procedures to eliminate or control each of those hazards, and then monitoring each of those points regularly. And they required extensive documentation of all this work. This became the foundation for the Hazard Analysis and Critical Control Point (HACCP) system. 
      The Apollo missions were humans’ longest and farthest voyages in space, so food for the astronauts had to be guaranteed safe for consumption hundreds of thousands of miles from any medical facility. Credit: NASA
      Howard Bauman, the microbiologist leading Pillsbury’s Apollo work, convinced his company to adopt the approach, and he became the leading advocate for its adoption across the food industry. That gradual process took decades, starting with the regulation of certain canned foods in the 1970s and culminating in the 2011 Food Safety Modernization Act, which mandated HACCP-like requirements across all food producers regulated by the U.S. Food and Drug Administration. By then, the U.S. Department of Agriculture was managing HACCP requirements for meat and poultry, while Canada and much of Europe had also put similar rules in place. 

      The standards also apply to any outside producers who want to export food into a country that requires HACCP, effectively spreading them across the globe.
      Read More Share
      Details
      Last Updated Jun 10, 2024 Related Terms
      Spinoffs Technology Transfer Technology Transfer & Spinoffs Explore More
      2 min read New Energy Source Powers Subsea Robots Indefinitely
      Power modules driven by ocean temperatures save money, reduce pollution
      Article 6 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle
      NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more.
      Article 2 weeks ago 2 min read Tech Today: From Spacesuits to Racing Suits
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      The Apollo Program
      Astronauts
      View the full article
    • By NASA
      2 min read
      Hubble Examines a Barred Spiral’s Light
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy NGC 3059. ESA/Hubble & NASA, D. Thilker This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy NGC 3059, which lies about 57 million light-years from Earth. Hubble’s Wide Field Camera 3 collected the data in May 2024 as part of an observing program that studied a number of galaxies. All of the observations used the same range of filters: partially transparent materials that allow only very specific wavelengths of light to pass through.
      Astronomers use filters extensively in their observations. These filters may allow either extremely narrow or somewhat broader ranges of light through to the telescope’s instruments. Narrow-band filters are invaluable from a scientific perspective because they filter specific wavelengths of light that are associated with specific physical and chemical processes. For example, under certain conditions, hydrogen atoms emit red light with a wavelength value of 656.46 nanometers called H-alpha emission, or the ‘H-alpha line’. It is very useful to astronomers because its presence indicates certain physical processes and conditions and is often a tell-tale sign of newly forming stars.
      The data in this image used a narrow-band filter that allowed H-alpha emission through to the telescope’s detectors. The particular filter, called F657N (F for filter, N for narrow, and 657 for the wavelength in nanometers) or the H-alpha filter, lets through light very close to the 656.46 nanometer H-alpha line’s wavelength. It reveals pinkish star-forming regions in the galaxy.
      Data from five other wide-band filters also contributed to this image. As their name implies, wide-band filters allow a wider range of wavelengths through to Hubble’s instruments. They isolate sections of the electromagnetic spectrum allowing astronomers to explore different aspects of the object Hubble is looking at.
      In the case of this image, wide-band filters revealed the bluish patches that hold older stars. In addition, information from multiple filters provides image processors with the data to make beautiful and informative images such as this one.
      Text Credit: European Space Agency (ESA)

      Download this image

      Explore More

      Hubble Space Telescope


      Tracing the Growth of Galaxies


      Galaxy Details and Mergers

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 07, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      Dark Matter & Dark Energy


      View the full article
    • By NASA
      3 min read
      NASA to Change How It Points Hubble Space Telescope
      This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA After completing a series of tests and carefully considering the options, NASA announced Tuesday work is underway to transition its Hubble Space Telescope to operate using only one gyroscope (gyro). While the telescope went into safe mode May 24, where it now remains until work is complete, this change will enable Hubble to continue exploring the secrets of the universe through this decade and into the next, with the majority of its observations unaffected.
      Of the six gyros currently on the spacecraft, three remain active. They measure the telescope’s slew rates and are part of the system that determines and controls the direction the telescope is pointed. Over the past six months, one particular gyro has increasingly returned faulty readings, causing the spacecraft to enter safe mode multiple times and suspending science observations while the telescope awaits new instructions from the ground.
      This one gyro is experiencing “saturation,” where it indicates the maximum slew rate value possible regardless of how quickly the spacecraft is slewing. Although the team has repeatedly been able to reset the gyro’s electronics to return normal readings, the results have only been temporary before the problem reappears as it did again in late May.
      To return to consistent science operations, NASA is transitioning the spacecraft to a new operational mode it had long considered: Hubble will operate with only one gyro, while keeping another gyro available for future use. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing problems, which the team will continue to monitor. Hubble uses three gyros to maximize efficiency but can continue to make science observations with only one gyro. NASA first developed this plan more than 20 years ago, as the best operational mode to prolong Hubble’s life and allow it to successfully provide consistent science with fewer than three working gyros. Hubble previously operated in two-gyro mode, which is negligibly different from one-gyro mode, from 2005-2009. One-gyro operations were demonstrated in 2008 for a short time with no impact to science observation quality.
      While continuing to make science observations in one-gyro mode, there are some expected minor limitations. The observatory will need more time to slew and lock onto a science target and won’t have as much flexibility as to where it can observe at any given time. It also will not be able to track moving objects closer than Mars, though these are rare targets for Hubble.
      The transition involves reconfiguring the spacecraft and ground system as well as assessing the impact to future planned observations. The team expects to resume science operations again by mid-June. Once in one-gyro mode, NASA anticipates Hubble will continue making new cosmic discoveries alongside other observatories, such as the agency’s James Webb Space Telescope and future Nancy Grace Roman Space Telescope, for years to come.
      Launched in 1990, Hubble has more than doubled its expected design lifetime, and has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries.
      Learn more about NASA’s Hubble Space Telescope on the agency’s website:
      https://www.nasa.gov/hubble
      Resources

      Download the image above


      Hubble Pointing and Control


      Operating Hubble with Only One Gyroscope


      Hubble Science Highlights


      Hubble Images

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 04, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

      View the full article
  • Check out these Videos

×
×
  • Create New...