Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light
      This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72). ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
      M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
      The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
      Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 25, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Globular Clusters Goddard Space Flight Center Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Star Clusters



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      NASA/JPL-Caltech A NASA spacesuit glove designed for use during spacewalks on the International Space Station is prepared for thermal vacuum testing inside a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California on Nov. 1, 2023.
      Part of a NASA spacesuit design called the Extravehicular Mobility Unit, the glove was tested at vacuum and minus 352 degrees Fahrenheit (minus 213 degrees Celsius) — temperatures as frigid as those Artemis III astronauts could experience on the Moon’s South Pole. A team from NASA JPL, NASA’s Johnson Space Center in Houston, and the NASA Engineering and Safety Center have collaborated on testing gloves and boots in CITADEL. Elbow joints are slated for testing next. In addition to spotting vulnerabilities with existing NASA suit designs, the experiments will help the agency prepare criteria for test methods for the next-generation lunar suit — being built by Axiom Space — which NASA astronauts will wear during the Artemis III mission.
      Read more about the testing needed for Artemis III.
      Text credit: Melissa Pamer
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      Robert Markowitz The four astronauts who will be the first to fly to the Moon under NASA’s Artemis campaign have designed an emblem to represent their mission that references both their distant destination and the home they will return to. The crew unveiled their patch in this April 2, 2025, photo.
      The crew explained the patch’s symbolism, and its play on the abbreviation of Artemis II to AII, with the following description: The Artemis II test flight begins when a mighty team launches the first crew of the Artemis generation. This patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign, but also an endeavor of discovery that seeks to explore for all and by all. Framed in Apollo 8’s famous Earthrise photo, the scene of the Earth and the Moon represents the dual nature of human spaceflight, both equally compelling: The Moon represents our exploration destination, focused on discovery of the unknown. The Earth represents home, focused on the perspective we gain when we look back at our shared planet and learn what it is to be uniquely human. The orbit around Earth highlights the ongoing exploration missions that have enabled Artemis to set sights on a long-term presence on the Moon and soon, Mars.
      Commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch from NASA, and mission specialist Jeremy Hansen from CSA (Canadian Space Agency), will venture around the Moon in 2026 on Artemis II. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, for the first time with astronauts. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Text credit: Brandi Dean, Courtney Beasley
      Image credit: NASA/Robert Markowitz
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Test flights help airplane and drone manufacturers identify which parts of the aircraft are creating the most noise. Using hundreds of wired microphones makes it an expensive and time-consuming process to improve the design to meet noise requirements. Credit: NASA Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. It’s also sensitive enough to help farmers with pest problems. A commercial wireless microphone array recently created with help from NASA can locate crop-threatening insects by listening for the sounds they make in fields. 

      Since releasing its first commercial product in 2017, a sensor for wind tunnel testing developed with extensive help from NASA (Spinoff 2020), Interdisciplinary Consulting Corporation (IC2) has doubled its staff and moved to a larger lab and office space to produce its new WirelessArray product. Interested in making its own flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported this project with Small Business Innovation Research contracts and expert consulting.

      Airplanes go through noise testing and require certification that they don’t exceed the noise level set for their body type by the Federal Aviation Administration. When an airplane flies directly overhead, the array collects noise data to build a two-dimensional map of the sound pressure and its source. A custom software package translates that information for the end user.

      For previous NASA noise testing, multiple semi-trucks hauled all the sensors, wires, power generators, racks of servers, and other equipment required for one flight test. The setup and teardown took six people three days. By contrast, two people can pack the WirelessArray into a minivan and set it up in a day. 

      IC2 is working with an entomologist to use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will make it possible for farmers to intervene before they do too much damage while limiting pesticide use to those areas. Whether it’s helping planes in the sky meet noise requirements or keeping harmful insects away from crops, NASA technology is finding sound-based solutions for the benefit of all. 
      Read More Share
      Details
      Last Updated Mar 14, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 week ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago 3 min read NASA Gives The World a Brake
      Article 3 months ago Keep Exploring Discover Related Topics
      Langley Expertise and Facilities
      Humans in Space
      Technology Transfer & Spinoffs
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate. Credits: NASA/Olivia Tyrrell  A team at NASA’s Langley Research Center in Hampton, Virginia, has captured first-of-its-kind imagery of a lunar lander’s engine plumes interacting with the Moon’s surface, a key piece of data as trips to the Moon increase in the coming years under the agency’s Artemis campaign.
      The Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 instrument took the images during the descent and successful soft landing of Firefly Aerospace’s Blue Ghost lunar lander on the Moon’s Mare Crisium region on March 2, as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate.NASA/Olivia Tyrrell The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.
      The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.
      Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for…
      Rob Maddock
      SCALPSS project manager
      “Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, SCALPSS project manager. “The data is vital to reducing risk in the design and operation of future lunar landers as well as surface infrastructure that may be in the vicinity. We have an absolutely amazing team of scientists and engineers, and I couldn’t be prouder of each and every one of them.”
      As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to accurately predict the effects of landings. Data from SCALPSS will better inform future robotic and crewed Moon landings.
      The SCALPSS 1.1 technology includes six cameras in all, four short focal length and two long focal length. The long-focal-length cameras allowed the instrument to begin taking images at a higher altitude, prior to the onset of the plume-surface interaction, to provide a more accurate before-and-after comparison of the surface. Using a technique called stereo photogrammetry, the team will later combine the overlapping images – one set from the long-focal-length cameras, another from the short focal length – to create 3D digital elevation maps of the surface.
      This animation shows the arrangement of the six SCALPSS 1.1 cameras and the instrument’s data storage unit. The cameras are integrated around the base of the Blue Ghost lander. Credit: NASA/Advanced Concepts Lab The instrument is still operating on the Moon and as the light and shadows move during the long lunar day, it will see more surface details under and immediately around the lander. The team also hopes to capture images during the transition to lunar night to observe how the dust responds to the change.  
      “The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions,” said Michelle Munk, SCALPSS principal investigator.
      The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions
      Michelle Munk
      SCALPSS principal investigator
      It will take the team several months to fully process the data from the Blue Ghost landing. They plan to issue raw images from SCALPSS 1.1 publicly through NASA’s Planetary Data System within six months.
      The team is already preparing for its next flight on Blue Origin’s Blue Moon lander, scheduled to launch later this year. The next version of SCALPSS is undergoing thermal vacuum testing at NASA Langley ahead of a late-March delivery to Blue Origin.
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Mar 13, 2025 Related Terms
      General Explore More
      4 min read Five Facts About NASA’s Moon Bound Technology
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 2 months ago 3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...