Jump to content

An Apollo 8 Christmas Dinner Surprise: Turkey and Gravy Make Space History


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

On Christmas Day in 1968, the three-man Apollo 8 crew of Frank Borman, Jim Lovell, and Bill Anders found a surprise in their food locker: a specially packed Christmas dinner wrapped in foil and decorated with red and green ribbons. Something as simple as a “home-cooked meal,” or as close as NASA could get for a spaceflight at the time, greatly improved the crew’s morale and appetite. More importantly, the meal marked a turning point in space food history.

Portrait of the Apollo 8 crew
The prime crew of the Apollo 8 lunar orbit mission pose for a portrait next to the Apollo Mission Simulator at the Kennedy Space Center (KSC). Left to right, they are James A. Lovell Jr., command module pilot; William A. Anders, lunar module pilot; and Frank Borman, commander.
NASA

On their way to the Moon, the Apollo 8 crew was not very hungry. Food scientist Malcolm Smith later documented just how little the crew ate. Borman ate the least of the three, eating only 881 calories on day two, which concerned flight surgeon Chuck Berry. Most of the food, Borman later explained, was “unappetizing.” The crew ate few of the compressed, bite-sized items, and when they rehydrated their meals, the food took on the flavor of their wrappings instead of the actual food in the container. “If that doesn’t sound like a rousing endorsement, it isn’t,” he told viewers watching the Apollo 8 crew in space ahead of their surprise meal. As Anders demonstrated to the television audience how the astronauts prepared a meal and ate in space, Borman announced his wish, that folks back on Earth would “have better Christmas dinners” than the one the flight crew would be consuming that day.1

If that doesn’t sound like a rousing endorsement, it isn’t.

Frank Borman

Frank Borman

Apollo 8 Astronaut

Over the 1960s, there were many complaints about the food from astronauts and others working at the Manned Spacecraft Center (now NASA’s Johnson Space Center). After evaluating the food that the Apollo 8 crew would be consuming onboard their upcoming flight, Apollo 9 astronaut Jim McDivitt penciled a note to the food lab about his in-flight preferences. Using the back of the Apollo 8 crew menu, he directed them to decrease the number of compressed bite-sized items “to a bare minimum” and to include more meat and potato items. “I get awfully hungry,” he wrote, “and I’m afraid I’m going to starve to death on that menu.”2

In 1969, Rita Rapp, a physiologist who led the Apollo Food System team, asked Donald Arabian, head of the Mission Evaluation Room, to evaluate a four-day food supply used for the Apollo missions. Arabian identified himself as someone who “would eat almost anything. … you might say [I am] somewhat of a human garbage can.” But even he found the food lacked the flavor, aroma, appearance, texture, and taste he was accustomed to. At the end of his four-day assessment he concluded that “the pleasures of eating were lost to the point where interest in eating was essentially curtailed.”3

An array of food items and related implements used on the Gemini-Titan 4 mission
Food used on the Gemini-Titan IV flight. Packages include beef sandwich cubes, strawberry cereal cubes, dehydrated peaches, and dehydrated beef and gravy. A water gun on the Gemini spacecraft is used to reconstitute the dehydrated food and scissors are used to open the packaging.
NASA

Apollo 8 commander Frank Borman concurred with Arabian’s assessment of the Apollo food. The one item Borman enjoyed? It was the contents of the Christmas meal wrapped in ribbons: turkey and gravy. The Christmas dinner was so delicious that the crew contacted Houston to inform them of their good fortune. “It appears that we did a great injustice to the food people,” Lovell told capsule communicator (CAPCOM) Mike Collins. “Just after our TV show, Santa Claus brought us a TV dinner each; it was delicious. Turkey and gravy, cranberry sauce, grape punch; [it was] outstanding.” In response, Collins expressed delight in hearing the good news but shared that the flight control team was not as lucky. Instead, they were “eating cold coffee and baloney sandwiches.”4

4 packets of food and a spoon wrapped in plastic that were served to the Apollo 8 crew for Christmas
The Apollo 8 Christmas menu included dehydrated grape drink, cranberry-applesauce, and coffee, as well as a wetpack containing turkey and gravy.
U.S. Natick Soldier Systems Center Photographic Collection

The Apollo 8 meal was a “breakthrough.” Until that mission, the food choices for Apollo crews were limited to freeze dried foods that required water to be added before they could be consumed, and ready-to-eat compressed foods formed into cubes. Most space food was highly processed. On this mission NASA introduced the “wetpack”: a thermostabilized package of turkey and gravy that retained its normal water content and could be eaten with a spoon. Astronauts had consumed thermostabilized pureed food on the Project Mercury missions in the early 1960s, but never chunks of meat like turkey. For the Project Gemini and Apollo 7 spaceflights, astronauts used their fingers to pop bite-sized cubes of food into their mouths and zero-G feeder tubes to consume rehydrated food. The inclusion of the wetpack for the Apollo 8 crew was years in the making. The U.S. Army Natick Labs in Massachusetts developed the packaging, and the U.S. Air Force conducted numerous parabolic flights to test eating from the package with a spoon.5

Smith called the meal a real “morale booster.” He noted several reasons for its appeal: the new packaging allowed the astronauts to see and smell the turkey and gravy; the meat’s texture and flavor were not altered by adding water from the spacecraft or the rehydration process; and finally, the crew did not have to go through the process of adding water, kneading the package, and then waiting to consume their meal. Smith concluded that the Christmas dinner demonstrated “the importance of the methods of presentation and serving of food.” Eating from a spoon instead of the zero-G feeder improved the inflight feeding experience, mimicking the way people eat on Earth: using utensils, not squirting pureed food out of a pouch into their mouths. Using a spoon also simplified eating and meal preparation. NASA added more wetpacks onboard Apollo 9, and the crew experimented eating other foods, including a rehydrated meal item, with the spoon.6

Photo of Malcolm Smith squirting a clear plastic pouch of orange food into his mouth while sitting on a stool.
Malcolm Smith demonstrates eating space food.
NASA

Food was one of the few creature comforts the crew had on the Apollo 8 flight, and this meal demonstrated the psychological importance of being able to smell, taste, and see the turkey prior to consuming their meal, something that was lacking in the first four days of the flight. Seeing appetizing food triggers hunger and encourages eating. In other words, if food looks and smells good, then it must taste good. Little things like this improvement to the Apollo Food System made a huge difference to the crews who simply wanted some of the same eating experiences in orbit and on the Moon that they enjoyed on Earth.

Footnotes

[1] Apollo 8 Mission Commentary, Dec. 25, 1968, p. 543, https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/mission_trans/AS08_PAO.PDF; Apollo 8 Technical Debriefing, Jan. 2, 1969, 078-15, Apollo Series, University of Houston-Clear Lake, Houston, Texas (hereafter UHCL); Malcolm C. Smith to Director of Medical Research and Operations, “Nutrient consumption on Apollo VII and VIII,” Jan. 13, 1969, Rita Rapp Papers, Box 1, UHCL.

[2] Jim McDivitt food evaluation form, n.d., Box 17, Rapp Papers, UHCL.   

[3] Donald Arabian to Rapp, “Evaluation of four-day food supply,” May 8, 1969, Box 17, Rapp Papers, UHCL.

[4] Apollo 8 Mission Commentary, Dec. 25, 1968, p. 545.

[5] Malcolm Smith, “The Apollo Food Program,” in Aerospace Food Technology, NASA SP-202 (Washington, DC: 1970), pp. 5–8; Whirlpool Corporation, “Space Food Systems: Mercury through Apollo,” Dec. 1970, Box 9, Rapp Papers, UHCL.

[6] Smith, “The Apollo Food Program,” pp. 7–8; Smith to the Record, “Christmas Dinner for Apollo VIII,” Jan. 10, 1969, Box 1, Rapp Papers, UHCL; Smith et al, “Apollo Food Technology,” in Biomedical Results of Apollo, NASA SP-368 (Washington, DC: NASA, 1975), p. 456.

About the Author

Jennifer Ross-Nazzal

Jennifer Ross-Nazzal

NASA Human Spaceflight Historian

Jennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center.

Share

Details

Last Updated
Dec 21, 2023
Editor
Michele Ostovar

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Guardians from SSC joined CSO Gen. Saltzman and Lt. Gen. Philip Garrant, commander of SSC, in the 50th annual “Salute to Space Systems Command,” June 7.

      View the full article
    • By Space Force
      A space policy and strategy club founded at the U.S. Air Force Academy has expanded to a nationwide organization with over 1,000 members at dozens of U.S. Air Force ROTC detachments.

      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image shows Adam’s Bridge, a chain of shoals linking India and Sri Lanka. View the full article
    • By NASA
      From the left, NASA Kennedy Space Center’s, Maui Dalton, project manager, engineering; Katherine Zeringue, cultural resources manager; Janet Petro, NASA Kennedy Space Center director; and Ismael Otero, project manager, engineering, unveil a large bronze historical marker plaque at the location of NASA Kennedy’s original headquarters building on Tuesday, May 28, 2024. Approved in April 2023 as part of the State of Florida’s Historical Markers program in celebration of National Historic Preservation Month, the marker commemorates the early days of space exploration and is displayed permanently just west of the seven-story, 200,000 square foot Central Campus Headquarters Building, which replaced the old building in 2019.Photo credit:: NASA/Mike Chambers Current and former employees of NASA’s Kennedy Space Center in Florida gathered recently to celebrate the installation of a Florida Historical Marker cast in bronze at the location of the spaceport’s old headquarters building.
      The first of its kind inside the center’s secure area, the marker is the latest example of the center’s commitment to remembering its rich history as it continues to launch humanity’s future.
      At the forefront of NASA Kennedy’s commitment to preservation is Katherine Zeringue, who serves as cultural resources manager, overseeing the center’s historic resources from buildings to historic districts to archaeological sites.
      “Traditional approaches attempt to preserve things to a specific time period, including historic materials,” Zeringue said. “But that’s a challenge here because we still actively use our historic assets, which need to be modified to accommodate new missions and new spacecraft. Therefore, we rely on an adaptive reuse approach, in which the active use of a historic property helps to ensure its preservation.”
      Many iconic structures are still in service at NASA Kennedy, like the Beach House where Apollo astronauts congregated with their families, the Vehicle Assembly Building where NASA rockets are still stacked, the Launch Control Center, and Launch Complex 39A. All told, 83 buildings, seven historic districts, and one National Historic Landmark are either listed or are eligible for listing on the National Register of Historic Places.
      To conserve these resources, the spaceport follows a variety of federal laws, regulations, and executive orders, including the National Historic Preservation Act of 1966. This includes making a reasonable and good faith effort to identify any historic properties under its care and considering how its decisions affect historic properties.
      “The Cultural Resources Management Program aims to balance historic preservation considerations with the agency’s mission and mandate to ensure reliable access to space for government and commercial payloads,” Zeringue said. “Finding that proper balance is challenging in the dynamic environment of our spaceport.”
      Perhaps no other location embodies the center’s commitment to the past and the future more than Launch Complex 39A. Created in 1965, the launch complex was initially designed to support the Saturn V rocket, which powered the agency’s Apollo Program as it made numerous trips to the Moon. Outside of launching Skylab in 1973, the pad stood unused following Apollo’s end in 1972 until the agency’s Space Shuttle Program debuted in 1981. The transition from Apollo to space shuttle saw Launch Complex 39A transform from support of a single-use rocket to supporting the nation’s first reusable space launch and landing system.
      By the time the program ended in 2011, 135 space shuttle launches had taken place within Kennedy’s boundary, 82 of which were at Launch Complex 39A. Many of those were among the program’s most notable, including the flights of astronauts Sally Ride, NASA’s first woman in space, and Guion Bluford, NASA’s first Black astronaut in space, as well as the first flight to the newly created International Space Station in 1998.
      The launch complex began another transformation in 2014 when NASA signed a 20-year lease agreement with SpaceX as part of Kennedy’s transformation into a multi-user spaceport. SpaceX reconfigured Launch Complex 39A to support its Falcon 9 and Falcon Heavy rockets, which today launch robotic science missions and other government and commercial payloads, as well as crew and cargo to the space station. Apollo-era infrastructure is incorporated in the SpaceX Crew Launch Tower.
      “Launch Complex 39A exemplifies the balance between historic preservation and supporting the mission,” Zeringue noted. “Each chapter of the space program brings change, and those changes become additional chapters in the center’s historical legacy as we continue to build the future in space exploration.”
      View the full article
    • By NASA
      NASA’s OSIRIS-REx mission has been immortalized at the Smithsonian’s National Air and Space Museum in Washington as the latest awardee of the Robert J. Collier Trophy. Bestowed annually by the National Aeronautic Association, the trophy recognizes groundbreaking aerospace achievements.
      Members of the OSIRIS-REx team at the Smithsonian Institute’s National Air and Space Museum in Washington, D.C., with the Collier trophy on June 13, 2024. From left to right: Nayi Castro, mission operations manager, NASA’s Goddard Space Flight Center, Greenbelt, Md.; Nicole Lunning, curator, NASA’s Johnson Space Center, Houston; Anjani Polit, mission implementation systems engineer, University of Arizona, Tucson; Coralie Adam, OSIRIS-REx optical navigation lead, KinetX Inc.; Michael Moreau, OSIRIS-REx deputy project manager, NASA Goddard; Dennis Reuter, OVIRS instrument scientist, NASA Goddard; Ronald Mink, OSIRIS-REx missions systems engineer, NASA Goddard; Joshua Wood, system design lead, Lockheed Martin Space; Peter Antreasian, OSIRIS-REx navigation team chief, KinetX Inc.; Sandy Freund, program manager, Lockheed Martin Space; Eric Sahr, optical navigation engineer, KinetX Inc.NASA/Rani Gran OSIRIS-REx, formally the Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, was honored “for successfully executing the first American retrieval of an asteroid sample and its return to Earth,” according to the award citation. The award was announced in March, and the OSIRIS-REx team visited the museum on June 13, 2024, to see the mission’s name engraved in brass at the base of the statue.
      “It just blows me away to see the OSIRIS-REx team engraved on the Collier trophy, next to names like Orville Wright, the Apollo 8 crew, and the Voyager Mission Team,” said Michael Moreau, OSIRIS-REx deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  “I’m so proud of our amazing team that their excellence and sacrifice to make the OSIRIS-REx mission so successful have been recognized with this prestigious award.”
      While NASA’s accomplishments have been honored with the Collier award many times, this is one of just a handful of instances that NASA Goddard has been a major partner on a winning team. NASA Goddard most recently claimed a share of the award in 2022 for the James Webb Space Telescope. Previous wins also include 1993 honors for the Hubble Space Telescope and the 1974 prize for a NASA–U.S. Geological Survey satellite that began the long-running Landsat program that studies and monitors changes to Earth’s land masses.
      The OSIRIS-REx team includes NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin in Littleton, Colorado; the University of Arizona, Tucson; and KinetX in Tempe, Arizona. NASA’s Johnson Space Center is responsible for the curation of the Bennu sample material that OSIRIS-REx returned to Earth in September 2023.
      The Collier Trophy resides in a glass case in the “America by Air” section on the museum’s first floor. The century-old trophy stands at over 7 feet tall and weighs 525 pounds. The bronze sculpture depicts a globe, with three figures emerging from it. The sculpture rests on two walnut bases, each adorned with an engrave brass plaque bearing the names of the recipients.
      Baltimore sculptor Ernest Wise Keyser designed the Trophy in 1910 for Robert J. Collier, the publisher of Collier’s Weekly magazine and president of the Aero Club of America.
      By Rani Gran
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 18, 2024 EditorRob GarnerContactRani Gran Related Terms
      Goddard Space Flight Center OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) View the full article
  • Check out these Videos

×
×
  • Create New...