Jump to content

Human brain-inspired supercomputer will go live soon


Recommended Posts

Using just 20 watts of power, the human brain is capable of processing the equivalent of an exaflop — or a billion-billion mathematical operations per second. Now, researchers in Australia are building what will be the world's first supercomputer that can simulate networks at this scale. 

human%20brain%20computer%20cyborg%20AI.png

DeepSouth supercomputer - the world's first computer designed to emulate the parallel biological neural networks of the human brain itself. Developed by scientists at Western Sydney University's International Centre for Neuromorphic Systems, DeepSouth utilizes breakthrough neuromorphic hardware and software that mimics neurons and synapses to achieve unprecedented efficiency. 

The DeepSouth supercomputer distributes processing across a network of bespoke brain-inspired chips, unlike traditional supercomputers based on von Neumann designs. 

This enables DeepSouth to carry out a staggering 228 trillion synaptic operations per second, rivaling estimates for the human brain's processing speed. Yet it requires far less space and power than conventional systems. 

This new generation of brain-inspired supercomputing not only could make sci-fi applications an everyday reality but even more scary is the fact that they could someday create a cyborg brain vastly more powerful than our own. 

The prospect of entities, whether humans or AI (robots), equipped with cyborg brains is becoming increasingly plausible, paving the way for a profound shift in the hierarchy of Earth's dominant species.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      When designing a new spacecraft or exploration vehicle, there is intense focus on its technical performance. Do its systems perform as expected? What kind of power does it need? Will it safely reach its destination?

      Equally important, however, is whether that vehicle also works for the humans inside. Can astronauts easily reach critical controls? Do the seats conform to a crew member regardless of their height and body size? Does the layout of crew workstations, translation paths, stowage, and other items support effective working and living conditions?

      Those are just a few of the questions NASA’s Center for Design and Space Architecture (CDSA) seeks to answer. Based within the Human Health and Performance Directorate at Johnson Space Center in Houston, the CDSA is NASA’s conceptual, human-centered design studio. It creates advanced concepts for spacecraft, exploration vehicles, and habitats that put crew needs first. The team provides a full spectrum of design services, from concept sketches to CAD models, to scaled mockups and virtual reality (VR), to full-size prototype fabrication.
      Carl Conlee, Evan Twyford, and Dr. Robert Howard perform a window node visibility study on the mockup of the Space Exploration Vehicle. NASA The CDSA has been an integral partner in the design of everything from dining tables for the International Space Station to ergonomic seats for the Orion spacecraft, and private sleeping bunks for the Space Exploration Vehicle (also known as the Small Pressurized Rover). The multidisciplinary team also played key roles in the design and construction of analog habitats onsite at Johnson, including the Human Exploration Research Analog (HERA) and the Crew Health And Performance Exploration Analog (CHAPEA) habitats where volunteer crews recently completed simulated Mars missions.

      Dr. Robert Howard, CDSA co-lead and habitability domain lead, explained that the current HERA habitat was initially developed as the ground-test version of a lunar habitat envisioned by the Constellation Program. The CDSA team built medical operations and suit maintenance workstations, stowage systems, cameras, and outfitting supplies for the habitat, known then as the Habitat Demonstration Unit. Later, the team added a galley, exercise and stowage space, and crew quarters to university-built inflatable upper decks. They also outfitted the interior of a hygiene module provided by the Jet Propulsion Laboratory, helped Kennedy Space Center’s plant growth team locate their experiments in the habitat, and worked with the Human Factors Engineering Laboratory to develop crew procedures for testing the habitats at Johnson and in Arizona.

      “The plan was to excess the habitat when the program ended, but CDSA realized the asset was too valuable and we campaigned to find a new owner for the mockup,” Howard said. “That led to the birth of HERA. The Human Research Program now performs the day-to-day maintenance and conducts the HERA missions.”
      Dr. Robert Howard (left) briefs Apollo astronauts Gene Cernan, Neil Armstrong, and Harrison Schmitt on the Altair lunar lander mockup. NASA For CHAPEA, the CDSA worked with NASA teams and commercial partners to determine the habitat’s necessary functions and layout, assisted with furniture installation, provided design consultation and fabrication assistance for an external airlock, and designed and built a docking node.

      Another part of the CDSA’s work is the development of NASA test units for partner-produced vehicles and spacecraft. “In the early phases of a project, these test units can help NASA understand what requirements we want to levy on the partner,” Howard explained. “Later, they can be used to emulate partner concepts and NASA can perform independent studies with them, either to assess partner capabilities or to predict the impacts of possible changes.”

      The CDSA team can also build replicas of contractor mockups for crew training or additional testing. They are currently supporting development of lunar surface logistics, a pressurized rover, and Gateway components, too. 
      Center for Design and Space Architecture team members test a Gateway habitat mockup. From left are Brett Montoya, Taylor Phillips-Hungerford, and Zachary Taylor. NASA/Robert Markowitz In addition to Howard, the CDSA team includes Maijinn Chen, the technical discipline lead for space architecture, and Nathan Moore, the technical discipline lead for fabrication, as well as nearly a dozen contractors who serve as space architects, industrial designers, mechanical engineers, and VR developers. “It is a very multidisciplinary team, so we are able to leverage different skillsets to complete our work,” Howard said. “All of the team members are well-versed in design ideation, so we can collaborate when developing concepts, whether for high-level architectures, individual vehicle assets, subsystem components, or even crew-worn items.”

      Howard explained that the CDSA almost always works as a sub-team within a larger effort. “We can support a team at any point in a spacecraft lifecycle, but it is best when we are brought in at the very beginning,” he said. “That is where human-centered design processes can have the greatest impact in improving a space system for the lowest cost. It is also very helpful in ensuring that the requirements levied on our contractors and international partners reflect the needs of the future astronaut crews.”

      Howard can trace his passion for space exploration back to his early childhood. “I feel like I was born interested! My mom said when I was three, I might not watch ‘The Electric Company,’ but I would not miss ‘Star Trek’ or ‘Space 1999,” he said. “As I got older, I would gravitate toward the space section of the library and read anything I could about NASA. I was always more interested in human spaceflight than in unmanned vehicles and I suppose that was the beginning of my path towards habitability and human-centered design.”

      For Howard, the most rewarding part of the CDSA team’s work is creating things that have never existed. “I love it when we find a way to do something that was previously considered impossible, or beyond the scope of what was considered likely,” he said. “I consider it a personal calling to find ways to make space more habitable for humanity.”
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / Maria Werries NASA Aeronautics Returns to Oshkosh
      Sunday, July 21 at 8:30 p.m. EDT
      NASA will appear at Oshkosh with a full slate of interactive exhibits, informative activities, and fascinating people to meet. But if you can’t make it we’ve got you covered. Enjoy the show virtually right here on this page. John Gould will be onsite this coming week sending in daily updates with news about NASA’s events and festivities. Our goal is to give you our best “you are there” experience. Just with no cheese curds.
      — Jim Banke
      Read the preview story

      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024
      Article 2 days ago 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic
      Article 1 week ago 7 min read ARMD Solicitations
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 21, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics View the full article
    • By Amazing Space
      LIVE LAUNCH OF ARIANE 6
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Moving across a background of stars, the six red dots in this composite picture indicate the location of six sequential detections of the first near-Earth object discovered by NEOWISE after the spacecraft came out of hibernation in 2013: the asteroid 2013 YP139. The inset shows a zoomed-in view of one of the detections.NASA/JPL-Caltech Observed by NASA’s WISE mission, this image shows the entire sky seen in infrared light. Running through the center of the image and seen predominantly in cyan are the stars of the Milky Way. Green and red represent interstellar dust.NASA/JPL-Caltech/UCLA NASA’s near-Earth-object-hunting mission NEOWISE is nearing its conclusion. But its work will carry on with NASA’s next-generation infrared mission: NEO Surveyor.
      After more than 14 successful years in space, NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) mission will end on July 31. But while the mission draws to a close, another is taking shape, harnessing experience gained from NEOWISE: NASA’s NEO Surveyor (Near Earth Object Surveyor), the first purpose-built infrared space telescope dedicated to hunting hazardous near-Earth objects. Set for launch in late 2027, it’s a major step forward in the agency’s planetary defense strategy.
      “After developing new techniques to find and characterize near-Earth objects hidden in vast quantities of its infrared survey data, NEOWISE has become key in helping us develop and operate NASA’s next-generation infrared space telescope. It is a precursor mission,” said Amy Mainzer, principal investigator of NEOWISE and NEO Surveyor at the University of California, Los Angeles. “NEO Surveyor will seek out the most difficult-to-find asteroids and comets that could cause significant damage to Earth if we don’t find them first.”
      Seen here in a clean room at the Space Dynamics Laboratory in Logan, Utah, the WISE mission’s telescope is worked on by engineers. Avionics hardware and solar panels would later be attached before the spacecraft’s launch on Dec. 14, 2009. SDL WISE Beginnings
      NEOWISE’s end of mission is tied to the Sun. About every 11 years, our star experiences a cycle of increased activity that peaks during a period called solar maximum. Explosive events, such as solar flares and coronal mass ejections, become more frequent and heat our planet’s atmosphere, causing it to expand. Atmospheric gases, in turn, increase drag on satellites orbiting Earth, slowing them down. With the Sun currently ramping up to predicted maximum levels of activity, and with no propulsion system for NEOWISE to keep itself in orbit, the spacecraft will soon drop too low to be usable.
      The infrared telescope is going out of commission having exceeded scientific objectives for not one, but two missions, beginning as WISE (Wide-field Infrared Survey Explorer).
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, WISE launched in December 2009 with a six-month missionto scan the entire infrared sky. By July 2010, WISE had achieved this with far greater sensitivity than previous surveys, and NASA extended the mission until 2011.
      During this phase, WISE studied distant galaxies, outgassing comets, exploding white dwarf stars, and brown dwarfs. It identified tens of millions of actively feeding supermassive black holes. It also generated data on circumstellar disks — clouds of gas, dust, and rubble spinning around stars — that citizen scientists continue to mine through the Disk Detective project.
      In addition, it excelled at finding main belt asteroids, as well as near-Earth objects, and discovered the first known Earth Trojan asteroid. What’s more, the mission provided a census of dark, faint near-Earth objects that are difficult for ground-based telescopes to detect, revealing that these objects constitute a sizeable fraction of the near-Earth object population.
      Comet NEOWISE was discovered by its namesake mission on March 27, 2020, and became a dazzling celestial object visible in the Northern Hemisphere for several weeks that year. It was one of 25 comets discovered by the mission.SDL/Allison Bills Infrared Heritage
      Invisible to the naked eye, infrared wavelengths are emitted by warm objects. To keep the heat generated by WISE itself from interfering with its infrared observations, the spacecraft relied on cryogenic coolant. By the time the coolant had run out, WISE had mapped the sky twice, and NASA put the spacecraft into hibernation in February 2011.
      Soon after, Mainzer and her team proposed a new mission for the spacecraft: to search for, track, and characterize near-Earth objects that generate a strong infrared signal from their heating by the Sun.
      “Without coolant, we had to find a way to cool the spacecraft down enough to measure infrared signals from asteroids,” said Joseph Masiero, NEOWISE deputy principal investigator and a scientist at IPAC, a research organization at Caltech in Pasadena, California. “By commanding the telescope to stare into deep space for several months, we determined it would radiate only enough heat to reach lower temperatures that would still allow us to acquire high-quality data.” NASA reactivated the mission in 2013 under the Near-Earth Object Observations Program, a precursor to the agency’s current planetary defense program, with the new name NEOWISE.
      By repeatedly observing the sky from low Earth orbit, NEOWISE has made 1.45 million infrared measurements of over 44,000 solar system objects to date. That includes more than 3,000 NEOs, 215 of which the space telescope discovered. Twenty-five of those are comets, among them the famed comet NEOWISE that was visible in the night sky in the summer of 2020.
      “The spacecraft has surpassed all expectations and provided vast amounts of data that the science community will use for decades to come,” said Joseph Hunt, NEOWISE project manager at JPL. “Scientists and engineers who worked on WISE and through NEOWISE also have built a knowledge base that will help inform future infrared survey missions.”
      The space telescope will continue its survey until July 31. Then, on Aug. 8, mission controllers at JPL will send a command that puts NEOWISE into hibernation for the last time. Since its launch, NEOWISE’s orbit has been dropping closer to Earth. NEOWISE is expected to burn up in our planet’s atmosphere sometime between late 2024 and early 2025.
      More About the Mission
      NEOWISE and NEO Surveyor support the objectives of NASA’s Planetary Defense Coordination Office (PDCO) at NASA Headquarters in Washington. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 140 meters (460 feet) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      JPL manages and operates the NEOWISE mission for PDCO within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing, archiving, and distribution is done at IPAC at Caltech. Caltech manages JPL for NASA.
      For more information about NEOWISE, visit:
      https://www.nasa.gov/neowise
      NASA’s NEOWISE Celebrates 10 Years, Plans End of Mission Classroom Activity: How to Explore an Asteroid Mission: Near-Earth Object Surveyor Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-094
      Share
      Details
      Last Updated Jul 01, 2024 Related Terms
      NEOWISE Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Planetary Defense Coordination Office WISE (Wide-field Infrared Survey Explorer) Explore More
      4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings
      Article 4 days ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits
      Article 4 days ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...