Jump to content

NASA Flies Drones Autonomously for Air Taxi Research


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A small, black drone with multiple helicopter-like blades hovers over some trees during a bright, partly cloudy day in Virginia.
An Alta-8 small Unmanned Aircraft System testbed vehicle flies above NASA’s Langley Research Center in Hampton, Virginia. Flying beyond visual line of sight from observers on the ground required special approval from the Federal Aviation Administration and NASA.
NASA / Bowman

Researchers at NASA’s Langley Research Center in Hampton, Virginia recently flew multiple drones beyond visual line of sight with no visual observer. The drones successfully flew around obstacles and each other during takeoff, along a planned route, and upon landing, all autonomously without a pilot controlling the flight. This test marks an important step towards advancing self-flying capabilities for air taxis.

“Flying the vehicles beyond visual line of sight, where neither the vehicle nor the airspace is monitored using direct human observation, demonstrates years of research into automation and safety systems, and required specific approval from the Federal Aviation Administration and NASA to complete,” said Lou Glaab, branch head for the aeronautics systems engineering branch at NASA Langley.

It is safer and more cost effective to test self-flying technology meant for larger, passenger carrying air taxis on smaller drones to observe how they avoid each other and other obstacles.

NASA also is testing elements of automation technology using helicopters. These stand-in aircraft help NASA mature the autonomy well before self-flying air taxis are integrated into the skies.

“When you have multiple vehicles, all coming and going from a vertiport that is located adjacent to an airport or deep within a community, we have to ensure the automation technologies of these vehicles are capable of safely handling a high volume of air traffic in a busy area,” said Glaab.

Building upon past tests, the team successfully performed multiple flights using purchased ALTA 8 Uncrewed Aircraft Systems, also known as drones, with no visual observer and flew the drones beyond visual line of sight, referred to as “NOVO-BVLOS” flights.

The software loaded onto the small drones performed airspace communications, flight path management, avoidance with other vehicles, and more skills needed to operate in a busy airspace. This is imperative for what is envisioned with Advanced Air Mobility (AAM), where drones and air taxis will be operating at the same time on a routine basis.

The flight tests were observed from NASA Langley’s Remote Operations for Autonomous Missions control center while the drones took off and landed at the City Environment for Testing Autonomous Integrated Navigation test range.

A room full of computer screens on tables and a far wall are watched by researchers monitoring the flight of small drones.
NASA researchers monitor the flight of an autonomous vehicle from the Remote Operations for Autonomous Missions UAS Operations Center at NASA’s Langley Research Center in Hampton, Virginia. the center facilitates “beyond visual line of sight” flight operations of small uncrewed aircraft system vehicles, also known as drones.
NASA / David Bowman

NASA will transfer the new technology created during this project to the public to ensure industry manufacturers can access the software while designing their vehicles.

“NASA’s ability to transfer these technologies will significantly benefit the industry,” said Jake Schaefer, flight operations lead for the project. “By conducting flight tests within the national airspace, in close proximity to airports and an urban environment, we are table to test technologies and procedures in a controlled but relevant environment for future AAM vehicles.”

One of these technologies was ICAROURS, which stands for NASA’s Integrated Configurable Architecture for Reliable Operations of Unmanned Systems. This software provides an autonomous detect-and-avoid function and is part of the overall system to maintain “well clear” from other air traffic.

Another technology used was NASA’s Safe2Ditch system, which allows the vehicle to observe the ground below and make an autonomous decision on the safest place to land in the event of an in-flight emergency.

NASA’s AAM mission has multiple projects contributing to various research areas. This project, called the High Density Vertiplex, was specifically focused on testing and evaluating where these future vehicles will take off and land at high frequency, called vertiports, or vertiplexes, for multiple vertiports near each other, and the technology advancements needed to make this successful.

Share

Details

Last Updated
Dec 21, 2023
Editor
Jim Banke
Contact
Location
Langley Research Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Study Reveals Venus Crust Surprise
      This global view of the surface of Venus is centered at 180 degrees east longitude. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer Venus Orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. NASA/JPL-Caltech New details about the crust on Venus include some surprises about the geology of Earth’s hotter twin, according to new NASA-funded research that describes movements of the planet’s crust.
      Scientists expected the outermost layer of Venus’ crust would grow thicker and thicker over time given its apparent lack of forces that would drive the crust back into the planet’s interior. But the paper, published in Nature Communications, proposes a crust metamorphism process based on rock density and melting cycles.
      Earth’s rocky crust is made up of massive plates that slowly move, forming folds and faults in a process known as plate tectonics. For example, when two plates collide, the lighter plate slides on top of the denser one, forcing it downward into the layer beneath it, the mantle. This process, known as subduction, helps control the thickness of Earth’s crust. The rocks making up the bottom plate experience changes caused by increasing temperature and pressure as it sinks deeper into the interior of the planet. Those changes are known as metamorphism, which is one cause of volcanic activity.
      In contrast, Venus has a crust that is all one piece, with no evidence for subduction caused by plate tectonics like on Earth, explained Justin Filiberto, deputy chief of NASA’s Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston and a co-author on the paper. The paper used modeling to determine that its crust is about 25 miles (40 kilometers) thick on average and at most 40 miles (65 kilometers) thick.
      “That is surprisingly thin, given conditions on the planet,” said Filiberto. “It turns out that, according to our models, as the crust grows thicker, the bottom of it becomes so dense that it either breaks off and becomes part of the mantle or gets hot enough to melt.” So, while Venus has no moving plates, its crust does experience metamorphism. This finding is an important step toward understanding geological processes and evolution of the planet.
      “This breaking off or melting can put water and elements back into the planet’s interior and help drive volcanic activity,” added Filiberto. “This gives us a new model for how material returns to the interior of the planet and another way to make lava and spur volcanic eruptions. It resets the playing field for how the geology, crust, and atmosphere on Venus work together.”
      The next step, he added, is to gather direct data about Venus’ crust to test and refine these models. Several upcoming missions, including NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) and VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) and, in partnership with ESA (European Space Agency), Envision, aim to study the planet’s surface and atmosphere in greater detail. These efforts could help confirm whether processes like metamorphism and recycling are actively shaping the Venusian crust today—and reveal how such activity may be tied to volcanic and atmospheric evolution.
      “We don’t actually know how much volcanic activity is on Venus,” Filiberto said. “We assume there is a lot, and research says there should be, but we’d need more data to know for sure.”
      Melissa Gaskill
      NASA Johnson Space Center
      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Victoria Segovia
      NASA’s Johnson Space Center
      281-483-5111
      victoria.segovia@nasa.gov

      Read More About Venus

      Share








      Details
      Last Updated May 09, 2025 Related Terms
      Astromaterials Venus Explore More
      5 min read How NASA is Using Virtual Reality to Prepare for Science on Moon


      Article


      2 months ago
      5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…


      Article


      5 months ago
      5 min read 5 Surprising NASA Heliophysics Discoveries Not Related to the Sun


      Article


      6 months ago
      Keep Exploring Discover Related Topics
      Venus



      Astromaterials



      Planetary Science



      Solar System


      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By NASA
      Photo of Matt Anderson Acting NASA Administrator Janet Petro issued the following statement regarding the nomination by President Donald Trump of Matt Anderson Wednesday to serve as the agency’s deputy administrator:
      “As a retired United States Air Force colonel and executive of the Space Force Association, Matt Anderson brings extensive knowledge of space operations, aeronautics expertise, and industry experience. If confirmed, he would join NASA’s leadership team at a time when partnerships and a sharpened focus on mission are essential to our continued success. Along with President Trump’s nominee to lead NASA, Jared Isaacman, he will strengthen collaboration across sectors and help NASA advance exploration, serve the American people, and deliver results for the benefit of all.”
      Throughout his over 24-year tenure in the U.S. Air Force, Anderson culminated his career as the U.S. Transportation Command’s senior liaison officer to North American Aerospace Defense Command (NORAD), U.S. Northern Command (USNORTHCOM), and U.S. Space Command (USSPACECOM). He retired as a colonel Oct. 1, 2021. Anderson is currently a vice president and Space Force & Air Force client executive at CACI. He also serves as the chief growth officer at the Space Force Association.
      An alum of the U.S. Air Force Academy, Embry-Riddle Aeronautical University, and the University of Colorado at Colorado Springs, Anderson holds degrees in biology, aeronautical science, and leadership & counseling. In 2024, Anderson was named by the Washington Exec as one of their “Top Space Execs to Watch.”
      For more about NASA’s mission, visit:
      https://www.nasa.gov
      -end-
      Bethany Stevens / Amber Jacobson
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated May 07, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Leadership
      View the full article
    • By NASA
      NASA Langley highlights its Cirrus Design SR22 during Air Power Over Hampton Roads STEM Day. NASA/Angelique Herring NASA Langley Research Center’s integral role in the past, present, and future of flight was on full display April 25-27 during the Air Power Over Hampton Roads air show.
      The air show, held at Joint Base Langley-Eustis (JBLE), which neighbors NASA Langley in Hampton, Virginia, attracted thousands of spectators throughout the weekend.
      The weekend kicked off with a STEM Day on April 25. Langley’s Office of STEM Engagement (OSTEM) offered educational and engaging activities, exhibits, and displays to share NASA missions and encourage K-12 students from local schools to explore the possibilities that science, technology, engineering, and math offer.
      “Participation in the air show allows us to share NASA’s work in aeronautics with the public and provides an opportunity for Langley researchers and engineers to work directly with students and families to share the exciting work they do,” said Bonnie Murray, Langley OSTEM Student Services manager.
      NASA Langley personnel inspire young minds during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring Langley OSTEM’s participation continued throughout the weekend as a part of the air show’s STEM Expo, where visitors to the NASA booths tested a paper helicopter in a small-scale wind tunnel to explore flight dynamics, learned how NASA uses X-planes for research and designed their own X-plane, and tested experimental paper airplanes of various designs. By observing flight of the plane designs and making improvements to each one, students participated in the engineering design process. NASA subject matter experts in attendance guided students through these activities, inspired young minds by sharing some of their innovations, and promoted a variety of STEM career paths.
      “Through engagement in the NASA STEM Zone activities, students had an opportunity to see themselves in the role of a NASA researcher,” Murray said. “Authentic learning experiences such as these help build children’s STEM identity, increasing the likelihood of them pursuing STEM careers in the future.”
      A child enjoys NASA STEM activities during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring The air show’s static aircraft displays included NASA Langley’s Cirrus Design SR22, a research aircraft used to support NASA’s airborne science program, the science community, and aeronautics research.
      “Reflective of our strong, long-standing partnership with JBLE, NASA Langley was proud to participate in this year’s Air Power Over Hampton Roads air show,” said Glenn Jamison, director of Langley’s Research Services Directorate. “Our relationship spans back to 1917 when NACA and Langley Field evolved together over formative years in aerodynamic research, sharing the airspace and facilities here in Hampton. Today, we continue our collaboration with JBLE in pursuing shared interests and finding innovative solutions to complex problems.”
      The displays also featured several small Unmanned Aircraft Systems (sUAS) and NASA’s P-3 Orion, a research aircraft based at NASA’s Wallops Flight Facility on Wallops Island, Virginia.
      Air show visitors could explore a picture display that highlighted NASA Langley’s rich aviation legacy, from its founding in 1917 to Langley’s work today to accelerate advancements in aeronautics, science, and space technology and exploration. Spacey Casey, a crowd favorite, greeted and took pictures with educators, students, and guests throughout the weekend, bringing out-of-this-world smiles to their faces. Members of Langley’s Office of the Director also represented the center at the event.

      Brittny McGraw
      NASA Langley Research Center
      View the full article
    • By NASA
      Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
      NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
      “This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
      During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
      In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
      Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
      “Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
      Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
      Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
      “We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
      NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
      View the full article
  • Check out these Videos

×
×
  • Create New...