Jump to content

NASA Flies Drones Autonomously for Air Taxi Research


NASA

Recommended Posts

  • Publishers

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A small, black drone with multiple helicopter-like blades hovers over some trees during a bright, partly cloudy day in Virginia.
An Alta-8 small Unmanned Aircraft System testbed vehicle flies above NASA’s Langley Research Center in Hampton, Virginia. Flying beyond visual line of sight from observers on the ground required special approval from the Federal Aviation Administration and NASA.
NASA / Bowman

Researchers at NASA’s Langley Research Center in Hampton, Virginia recently flew multiple drones beyond visual line of sight with no visual observer. The drones successfully flew around obstacles and each other during takeoff, along a planned route, and upon landing, all autonomously without a pilot controlling the flight. This test marks an important step towards advancing self-flying capabilities for air taxis.

“Flying the vehicles beyond visual line of sight, where neither the vehicle nor the airspace is monitored using direct human observation, demonstrates years of research into automation and safety systems, and required specific approval from the Federal Aviation Administration and NASA to complete,” said Lou Glaab, branch head for the aeronautics systems engineering branch at NASA Langley.

It is safer and more cost effective to test self-flying technology meant for larger, passenger carrying air taxis on smaller drones to observe how they avoid each other and other obstacles.

NASA also is testing elements of automation technology using helicopters. These stand-in aircraft help NASA mature the autonomy well before self-flying air taxis are integrated into the skies.

“When you have multiple vehicles, all coming and going from a vertiport that is located adjacent to an airport or deep within a community, we have to ensure the automation technologies of these vehicles are capable of safely handling a high volume of air traffic in a busy area,” said Glaab.

Building upon past tests, the team successfully performed multiple flights using purchased ALTA 8 Uncrewed Aircraft Systems, also known as drones, with no visual observer and flew the drones beyond visual line of sight, referred to as “NOVO-BVLOS” flights.

The software loaded onto the small drones performed airspace communications, flight path management, avoidance with other vehicles, and more skills needed to operate in a busy airspace. This is imperative for what is envisioned with Advanced Air Mobility (AAM), where drones and air taxis will be operating at the same time on a routine basis.

The flight tests were observed from NASA Langley’s Remote Operations for Autonomous Missions control center while the drones took off and landed at the City Environment for Testing Autonomous Integrated Navigation test range.

A room full of computer screens on tables and a far wall are watched by researchers monitoring the flight of small drones.
NASA researchers monitor the flight of an autonomous vehicle from the Remote Operations for Autonomous Missions UAS Operations Center at NASA’s Langley Research Center in Hampton, Virginia. the center facilitates “beyond visual line of sight” flight operations of small uncrewed aircraft system vehicles, also known as drones.
NASA / David Bowman

NASA will transfer the new technology created during this project to the public to ensure industry manufacturers can access the software while designing their vehicles.

“NASA’s ability to transfer these technologies will significantly benefit the industry,” said Jake Schaefer, flight operations lead for the project. “By conducting flight tests within the national airspace, in close proximity to airports and an urban environment, we are table to test technologies and procedures in a controlled but relevant environment for future AAM vehicles.”

One of these technologies was ICAROURS, which stands for NASA’s Integrated Configurable Architecture for Reliable Operations of Unmanned Systems. This software provides an autonomous detect-and-avoid function and is part of the overall system to maintain “well clear” from other air traffic.

Another technology used was NASA’s Safe2Ditch system, which allows the vehicle to observe the ground below and make an autonomous decision on the safest place to land in the event of an in-flight emergency.

NASA’s AAM mission has multiple projects contributing to various research areas. This project, called the High Density Vertiplex, was specifically focused on testing and evaluating where these future vehicles will take off and land at high frequency, called vertiports, or vertiplexes, for multiple vertiports near each other, and the technology advancements needed to make this successful.

Share

Details

Last Updated
Dec 21, 2023
Editor
Jim Banke
Contact
Location
Langley Research Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions.  
      The campaign supports the NASA Student Airborne Research Program for undergraduate interns.
      Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta) The East Coast flights will take place from June 17-26. Researchers and students will fly multiple times each week in Dynamic Aviation’s King Air B200 aircraft at an altitude of 1,000 feet over Baltimore and Philadelphia as well as Norfolk, Hampton, Hopewell, and Richmond in Virginia. Meanwhile, a NASA P-3 aircraft based out of NASA’s Wallops Flight Facility in Virginia will fly over the same East Coast locations to collect different measurements.
      The West Coast flights will occur from June 29 – July 2. During the period, those same aircraft will conduct similar operations over Los Angeles, Imperial Valley, and Tulare Basin in California.
      The research aircraft will fly at lower altitudes than most commercial planes and will conduct maneuvers including vertical spirals from 1,000 to 10,000 feet, circling over power plants, landfills, and urban areas. They will also occasionally conduct “missed approaches” at local airports, where the aircraft will perform a low-level flyby over a runway to collect samples close to the surface.
      The aircraft carry instruments that will collect data on a range of greenhouse gases including carbon dioxide and methane, as well as air pollutants such as nitrogen dioxide, formaldehyde, and ozone. One purpose of this campaign is to validate space-based measurements observed by the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. Launched on a commercial satellite in April 2023, the TEMPO instrument provides hourly daytime measurements of air pollutants across the United States, northern Mexico, and southern Canada.
      “The goal is that this data we collect will feed into policy decisions that affect air quality and climate in the region,” said Glenn Wolfe, a research scientist and the principal investigator for the campaign at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The B-200 aircraft is owned by Dynamics Aviation, an aircraft company contracted by NASA.
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Tayler Gilmore
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jun 14, 2024 EditorJennifer R. MarderContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Tropospheric Emissions: Monitoring of Pollution (TEMPO) Wallops Flight Facility Explore More
      5 min read Surf, Turf, Above Earth: Students Participate in NASA Field Research
      Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists,…
      Article 10 months ago 10 min read A Tale of Three Pollutants
      Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A…
      Article 8 months ago 4 min read NASA Scientists Take to the Seas to Study Air Quality
      Article 1 week ago View the full article
    • By NASA
      Background: To protect astronauts from spaceflight health risks like solar radiation and microgravity, scientists develop countermeasures by studying model organisms exposed to the space environment. For the first time, commercial astronaut data from the Inspiration4 (I4) mission has been collected for open-access research in an effort led by Weill Cornell Medicine. ARC’s Open Science Data Repository (OSDR) hosts this data for public use. Facilitated by the OSDR, data from the all-civilian crew enables researchers to validate decades of model organism research and make vital discoveries from biospecimens of humans. The OSDR’s Analysis Working Groups (AWGs), comprised of researchers from around the globe, collaborate to maximize the scientific value of space omics data.
      Main Findings: On June 11, 44 scientific publications, including 32 authored by members of the AWG community and the OSDR team, were prominently featured in the Space Omics and Medical Atlas (SOMA) package of publications in Nature Press. The collection of articles greatly expands our knowledge of how space travel affects humans by addressing questions about the transcriptomic, epigenomic, cellular, microbiome, and mitochondrial alterations observed during spaceflight. Results and best practices from these articles collectively inform SOMA, which provides a standardized approach to spaceflight related research (Figure).
      Impact: The AWG studies featured in these publications leverage the I4 data alongside other OSDR data to pioneer novel discoveries and formulate new hypotheses aimed at uncovering systemic biological responses during spaceflight. Historically, AWG collaborations have led to numerous scientific presentations at conferences, publications in high-impact journals, and the introduction of many new and more diverse researchers into the field.
      Keep Exploring Discover More Topics From NASA
      NASA Biological & Physical Sciences
      BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…
      International Space Station
      Human Research Program
      Ames Research Center
      View the full article
    • By NASA
      During the Rodent Research-1 (RR-1) mission flown to the ISS in 2014, videos that were taken to observe the mice revealed an unusual behavior that researchers are still working to understand. Young (16-week-old) but not old (32-week-old) mice engaged in a high level of ‘running’ behavior beginning within two weeks of launch (Sci Reports, 2019).
      Some alternate interpretations of the running behavior of mice on orbit include significant scientific literature on the rewarding effects of physical exercise, as seen in the footage of Astronaut Alan Bean on Space Lab below. A multi-investigator collaborative team of scientists is conducting follow-up studies on the ground as well as in space on the upcoming Rodent Research-26 mission to understand more about what could be driving this behavior. Comprehensive and in-depth molecular biology studies will be looking at potential indicators of stress (maladaptive coping) or whether the running behavior is a beneficial adaptation to the weightlessness of space.
      Watch the video below to see the mice (and humans) in space.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Video of the quirky circling behavior of mice aboard the ISS was recently released. Scientists will be doing further research to understand what's behind this unexplained behavior.NASA Keep Exploring Discover More Topics From NASA
      NASA Biological & Physical Sciences
      BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…
      International Space Station
      Human Research Program
      Ames Research Center
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California, talks to students from California State University, Northridge, California. As part of the university’s Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, the students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Students from a minority-serving university in California are helping solve challenges of autonomous systems for future drone operations on Earth and other planets. These students are making the most of opportunities with NASA, the U.S. Department of Defense, and industry, focusing on autopilot development and advanced systems that adapt and evolve.
      Students from California State University, Northridge, who are part of the university’s Autonomy Research Center, displayed and discussed their research with posters highlighting the technology they developed at a recent event at Edwards Air Force Base in Edwards, California. A Mars science helicopter, mini rovers for science exploration, and 3D printed sulfur concrete for Mars habitats are some of their projects, and they answered questions from experts in the field on May 23 at the Air Force Test Pilot School auditorium.
      Two men from NASA’s Armstrong Flight Research Center in Edwards, California, ask Jared Carrillo, a student from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics, about his work on the Mars Science Helicopter. Students displayed posters and answered questions about their technologies May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman “The goal is to help minority-serving institutions develop relationships with NASA,” said Bruce Cogan, a NASA Armstrong Small Business Innovation Research program liaison for the agency’s Aeronautics Research and Mission Directorate. “We want students to make connections and learn how to use NASA processes to submit research proposals. Students could also supplement work in autonomy that NASA wants to pursue.”
      Representatives from NASA’s Armstrong Flight Research Center in Edwards, California, attended the event, looking for potential collaborations with students where NASA Armstrong would provide the funding through sources such as the NASA Armstrong Center Innovation Fund and NASA’s Convergent Aeronautics Solutions project to advance technology.
      Six students from the California State University, Northridge, Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics spoke about their Trust in Autonomy technology. The students from left are Aniket Christi, Julia Spencer, Dana Bellinger, Zulma Lopez Rodriguez, front, Jordan Jannone, and Samuel Mercado. The group answered questions about their technology May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Use of uncrewed systems will require development of advanced controllers, and ideas like trust in autonomy, or how people can trust what the computers are doing, and human-machine teaming on Mars and Europa missions are examples of potential partnerships, Cogan said.
      Brad Flick, NASA Armstrong center director, and Tim Cacanindin, U.S. Air Force Global Power Bombers Combined Test Force deputy director, spoke at the event. Following the event, more than 50 students and faculty toured NASA Armstrong facilities.
      NASA’s Minority University Research and Education Project Institutional Research Opportunity funds a multi-year grant for the Autonomy Research Center. NASA Armstrong, and NASA’s Jet Propulsion Laboratory in Southern California, co-sponsored the NASA grant.
      Nhut Ho, director of the NASA-sponsored Autonomy Research Center for science, technology, engineering, entrepreneurship, arts, humanities, and mathematics at California State University, Northridge, left, spoke to Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California. The men were attending a student poster event, where students showcased their technologies and answered questions May 23 at the Air Force Test Pilot School auditorium on Edwards Air Force Base, California.NASA/Steve Freeman Share
      Details
      Last Updated Jun 10, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center General Jet Propulsion Laboratory MUREP STEM Engagement at NASA Explore More
      4 min read NASA Ames Hosts National Wildfire Coordinating Group
      Article 12 hours ago 5 min read Ed Stone, Former Director of JPL, Voyager Project Scientist, Dies
      Article 17 hours ago 2 min read NASA Glenn’s Yvette Harris Inducted into MBA Hall of Fame 
      Article 18 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Technologies
      Space Technology Mission Directorate
      Learning Resources
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NWCG Executive Board members stand in front of giant turbines in the National Full Scale Aerodynamic Complex during their visit to Ames Research Center on May 23, 2024. USAF/Patrick Goulding On May 21-23, 2024, the National Wildfire Coordinating Group (NWCG) visited NASA Ames Research Center, with participants representing 13 agencies and organizations. NWCG is a cooperative group focused on providing national leadership to enable interoperable wildland fire operations among federal, state, local, Tribal, and territorial partners. NASA became an associate member of NWCG in February 2024, with the goal of increasing collaboration across agencies and leveraging NASA data, technology, and innovation for nation-wide efforts in wildland fire management.    

      NASA’s Approach to Wildland Fire Management
      Across the agency, NASA’s approach to wildland fire management involves the application of research and technology before, during, and after a fire, in order to help ecosystems, animals, and human communities thrive. At Ames, two examples of these capabilities are the project office for FireSense and the Advanced Capabilities for Emergency Response Operations (ACERO) project. 

      Wildland fire solutions are a major theme within NASA’s Earth Action strategy. FireSense is part of this NASA-wide approach to wildland fire management, working with operational agencies and partners to measure pre-fire fuels conditions, active fire behavior, post-fire impacts and threats, and provide air quality forecasting. ACERO develops cutting-edge technology to remotely identify, monitor, and suppress wildland fire through the use of uncrewed aircraft.  

      Team members from both projects participated in the NWCG visit, and are represented in NWCG; NASA’s involvement is supported by Parimal Kopardekar (Director of the NASA Aeronautics Research Institute and the Advanced Air Mobility (AAM) Mission Integration Office) and Michael Falkowski (NASA Wildland Fires and FireSense Program Manager). Together, they represent NASA’s cross-mission directorate approach to managing wildland fire across the fire life cycle.  

      NASA Ames’ Involvement in NWCG: Data and Human Performance Characteristics
      By hosting NWCG’s annual offsite Executive Board meeting, Ames personnel were able to connect board members with NASA subject matter experts and project managers, provide tours of Ames facilities relevant to wildland fire management, and discuss NASA’s core capabilities and how they can augment the NWCG’s nation-wide fire management efforts. Specifically, NASA’s data capabilities and human performance characteristics studies were at the forefront of the day’s events.  

      On the data front, conversation centered around how to collectively tackle data continuity, storage, and accessibility. Large-scale computing resources are increasingly essential to store, manage, and incorporate data relevant to wildland fire management. With more advanced sensors on crewed aircraft, uncrewed aircraft, and satellites, addressing data continuity, storage, and accessibility are an essential piece of supporting wildland fire managers. 

      Ian Brosnan, Principal Investigator for NASA Earth eXchange (NEX), provided details about the NEX supercomputing and data analytics platform at Ames. The platform serves as a tool to increase availability of data from NASA missions and other sources, models, analysis tools, and research results, and the team uses this platform to investigate questions relevant to the increasing impact of wildland fire. For instance, their work uses machine learning and complex data integration to link air quality emissions and fire behavior, in order to detect wildfire ignition and spread. 

      The other focus of the Ames tour was NASA simulations and studies surrounding human performance characteristics, which refers to the human component of wildland fire management – such as managing fatigue in the field. Supporting the workforce is a primary goal for improving overall response to wildland fire management, as highlighted in the Wildfire Mitigation and Management Commission Report.  

      On this visit, NWCG members were able to meet with Jessica Nowinski, Division Chief of the Human Systems Integration Division, for a Human Factors overview, followed by a presentation by Immanuel Barshi on astronaut and pilot training, and a presentation by Cassie Hilditch on fatigue studies. NWCG Executive Board members were also able to tour the Airspace Operations Laboratory, with a particular focus on drones. The visit concluded with a tour of the National Full Scale Aerodynamic Complex, colloquially referred to as the Wind Tunnel.   
      The NWCG tour concluded in the National Full Scale Aerodynamic Complex; the group provides a sense of scale for just how massive the turbines are that pull air into the 120-foot wind tunnel. Patrick Goulding/USAF The Future of NASA and NWCG
      NWCG’s strength is fostering partnership, and many discussions over the three-day visit leveraged complementary strengths between the agencies. Bringing together research specialties, technology innovation, existing programs and campaigns, and subject expertise makes the national approach to wildland fire management more unified, efficient, and effective.  

      Looking forward, NASA’s involvement with NWCG will continue to produce partnership opportunities and further the national wildland fire management goals. NASA personnel are connecting with NWCG committees – including Data Management, Geospatial, Aviation and Risk Management – and will continue to support NWCG objectives by connecting subject matter experts across the agency with NWCG subject matter experts in the field.  
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 11, 2024 Related Terms
      General View the full article
  • Check out these Videos

×
×
  • Create New...