Jump to content

The Marshall Star for December 20, 2023


NASA

Recommended Posts

  • Publishers
32 Min Read

The Marshall Star for December 20, 2023

From left, Alneyadi, Hoburg, Bowen, and Rubio answer questions during the Marshall team member Q&A portion of their visit.

Crew-6 Connects with Marshall Team Members During Visit

By Celine Smith

One week after the 25th anniversary of the International Space Station, NASA’s SpaceX Crew-6 visited the agency’s Marshall Space Flight Center to share their experience during Expedition 69. The event was held Dec. 14 in Building 4316.

Expedition 69 began March 2 with Crew-6 flying on SpaceX’s Falcon 9 rocket from NASA’s Kennedy Space Center. While aboard the space station, the crew studied the behavior of flames in microgravity, grew cardiac tissue using 3-D culturing, and researched the impact of weightlessness on astronauts’ health.

Expedition 69 Crew-6 astronauts smile and hold a banner for a photo with team members from the Human Exploration Development & Operations Office at NASA’s Marshall Space Flight Center. From left, the astronauts are Sultan Alneyadi, Steven Bowen, Warren “Woody” Hoburg, and Frank Rubio.
Expedition 69 Crew-6 astronauts smile and hold a banner for a photo with team members from the Human Exploration Development & Operations Office at NASA’s Marshall Space Flight Center. From left, the astronauts are Sultan Alneyadi, Steven Bowen, Warren “Woody” Hoburg, and Frank Rubio.
NASA/Charles Beason

NASA astronauts Frank Rubio (flight engineer), Stephen Bowen (flight engineer), Warren “Woody” Hoburg (flight engineer), and UAE (United Arab Emirates) astronaut Sultan Alneyadi (flight engineer) answered questions from Marshall team members after viewing a short film summarizing the research done on Expedition 69.

Acting Center Director Joseph Pelfrey welcomed Marshall team members, thanking them and Crew-6 for all the effort that goes into making a mission successful.

“As we wrap up 2023, I just want to say how proud I am of our team and all the accomplishments that you have helped us achieve this year,” Pelfrey said. “Crew-6 is going to talk about their amazing experience. Marshall is a part of that experience and mission with the work we do here between Payload Operations, the Environmental Control and Life Support System and payload facilities and our Commercial Crew Program support. This is a great time to hear from our guests and celebrate our successes together.”

During the Q&A portion of the event, the audience learned about the strides in research being made on the station. Hoburg discussed the growing of human tissue while on the expedition.

“One day Sultan worked on heart muscle cells up there and we actually got to see the cells beating under the microscope,” Hoburg said. “We’re doing work in Low Earth orbit to help people back on Earth with potential heart disease. We also did work with the BioFabrication facility where we 3D-printed biological material. We printed the first-ever section of human meniscus.”

The microgravity environment of the station provides crew members with the ability to do more intricate work that cannot be done as well on Earth, Hoburg explained.

Expedition 69 is particularly important because it marks the longest time an American astronaut has been in space. The end of the mission concluded Rubio’s 371-day stay in space, which began with Expedition 68.

“I was excited to implement lessons learned right away,” Rubio said. “With your first mission, you’re learning. You typically don’t get to implement your better self until years later. I got that opportunity much sooner.”

From left, Alneyadi, Hoburg, Bowen, and Rubio answer questions during the Marshall team member Q&A portion of their visit.
From left, Alneyadi, Hoburg, Bowen, and Rubio answer questions during the Marshall team member Q&A portion of their visit.
NASA/Charles Beason

Rubio also used his experience to detail the effects of prolonged time in space on the body.

“You miss microgravity, in the sense that it’s a lot of fun to just fly around,” he said. “It takes 72 hours to 5 days to fully acclimate to microgravity. After two weeks, you’re completely used to it. When you come back to Earth, there’s a lot of aches and pains because the reality is offloading everything off your joints, especially your spine, feels good – specifically for those who are older. Like, for me, it feels like I’ve run a 5k every time I get up because my feet did nothing for a year, but your body does readjust.”

Expedition 69 also marks the first time a UAE astronaut has been to the station. Alneyadi spoke about his unique experience when asked about his participation in a culturally based event.

“I was presenting to the whole region, speaking Arabic, discussing the International Space Station, and showcasing the importance of its science,” Alneyadi said. “It was very impactful, and I felt honored to be a part of it as well. I see the impact on the students. They ask a lot of questions and have a lot of excitement.”

The event concluded with the opportunity for attendees to get their picture taken with the Crew-6 astronauts.

“People are the same everywhere, that’s the basics of humanity,” Bowen said when asked what’s the most exciting thing he’s learned from the international aspect of his work. From our perspective, we can’t see borders — it’s one Earth. At the very intimate singular level, people are people. We’re people, and we’re absolutely capable of doing amazing things.”

Learn more about Crew-6.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Take 5 with Jason Adam

By Wayne Smith

For Jason Adam, joining NASA wasn’t a career choice. It was a calling.

“A calling to push the boundaries of human knowledge, to turn the dreams of a starry-eyed child gazing up at the sky into a reality, and to be a part of humanity’s greatest adventure – the exploration of the universe,” said Adam, who is the manager for the CFM (Cryogenic Fluid Management) Portfolio Project at NASA’s Marshall Space Flight Center.

Jason Adam, manager for the CFM Portfolio Project at NASA’s Marshall Space Flight Center, holds a full-size resin model of a Thermodynamic Vent System Injector while standing in front of an Exploration Systems Test Facility within the CFM Laboratory in Building 4205.
Jason Adam, manager for the CFM Portfolio Project at NASA’s Marshall Space Flight Center, holds a full-size resin model of a Thermodynamic Vent System Injector while standing in front of an Exploration Systems Test Facility within the CFM Laboratory in Building 4205.
NASA/Danielle Burleson

The project develops key CFM technologies used to acquire, transfer, and store cryogenic fluids in orbit. The project is within STMD (Space Technology Mission Directorate) and develops crucial technologies for STMD and other mission directorates. Adam’s role extends across 12 states and six NASA centers, managing significant contracts and a multitude of complex activities nationwide.

Growing up in North Dakota, Adam said he always was captivated by the mysteries of the universe as he studied the night sky.

“(I was fascinated) by the endless expanse above, with its twinkling stars and wandering planets, and boundless possibilities,” he said. “This childhood wonder laid the foundation for my journey to NASA. It was here that my dream to explore the cosmos took flight.”

Working with projects like CFM enables Adam to live his dream, and he hopes to inspire others as well toward NASA’s mission of exploring the universe for the benefit of all.

“Remember your journey at NASA is not just about personal achievements, but also about contributing to the greater goal of exploring and understanding our universe,” he said. “Embrace this opportunity with enthusiasm and a commitment to excellence.”

Question: What excites you most about the future of human space exploration and your team’s role it?

Adam: Cryogenic fluid management is a critical and exciting area of technology, particularly in relation to the exploration of Mars for several reasons. One of the primary uses of cryogenic fluids in space exploration is as rocket fuel, specifically liquid hydrogen and liquid oxygen. These cryogenically stored fuels are highly efficient but must be kept at extremely low temperatures. Effective cryogenic fluid management is crucial for months or years-long missions to Mars, as it ensures that the spacecraft has enough fuel for the journey there, operations on the Martian surface, and the return trip. Mars missions are looking into using ISRU (in-situ resource utilization) to generate fuel from Martian resources. For example, water ice from Mars can be processed into liquid hydrogen and oxygen. Managing these cryogenic fluids effectively is essential for this process to be viable, enabling longer and more sustainable missions.

Cryogenic fluid management is not only a cornerstone to enable Mars exploration but also a catalyst for broader innovations in space travel and various terrestrial applications.

Question: What has been the proudest moment of your career and why?

Adam: There have been many proud moments in my 20-plus years at Marshall that originated at Stennis Space Center. Some of those moments include helping the shuttle return to safe flight through testing SSMEs (space shuttle main engines) at Stennis, to flying the Mighty Eagle Lander with a small team in the Marshall West Test Area, to now having the privilege of leading the CFM project with a group of spectacular individuals. In each case, I have been proudest when the team was accountable, authentic, passionate, inclusive, and highly competent. Those are the teams I cherish most and the type of environment I try to create as a leader.

Question: Who or what drives/motivates you?

Adam: Working at Marshall, my motivation is deeply rooted in the pioneering spirit of technological innovation and the quest for knowledge beyond Earth. Marshall, known for its groundbreaking work in developing systems that push the boundaries of space technology, serves as a constant source of inspiration for me. My drive is fueled by a profound passion for space exploration. The idea of contributing to missions that reach into the unknown, that test the limits of human ingenuity and reveal the mysteries of the cosmos, is what gets me up in the morning. I’m driven by the knowledge that the systems and technologies you’re helping to develop at Marshall will one day make space more accessible and safer for astronauts. This drive isn’t just about the technology itself, it’s about what that technology represents – the human desire to explore, to learn, and to constantly push forward. My motivation comes from wanting to contribute in a meaningful way to this grand endeavor. Each day at Marshall offers a new opportunity to be a part of something larger than yourself – to contribute to a legacy of exploration that benefits not just the present generation but also the future ones. In my role, I’m not just a witness to history in the making; I’m an active participant in shaping it.

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Adam: First, follow your passion. Begin by immersing yourself in a field that truly fascinates you. NASA’s diverse missions span from the depths of the oceans to the far reaches of space, so align your work with what genuinely excites you. This passion will be your driving force and will keep you motivated through challenges.

Second, build a strong foundation. Whether your focus is technical, scientific, or administrative, strive to develop a robust base of knowledge and skills. Seek opportunities to learn from different projects and teams. This diverse experience will be invaluable as you progress in your career, providing a well-rounded perspective and a toolkit of solutions.

Third, nurture your team. As you advance into leadership roles, remember that your success is intricately linked to the well-being and performance of your team. Invest in understanding their strengths, aspirations, and challenges. Encourage an environment where everyone feels valued and motivated. Strive to create an environment where employees can bring their full self to work. 

Question: What do you enjoy doing with your time while away from work?

Adam: Outside of work, I enjoy spending time with my family. My wife and I have three children and two dogs. We like to spend time outdoors and enjoy camping around the region in our camper on some weekends. My wife and I also like to watch our alma mater, North Dakota State University, play football.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Pamela Bourque Named Chief Counsel at Marshall

Pamela Bourque has been named as chief counsel at NASA’s Marshall Space Flight Center. She has served as the center’s acting chief counsel since May, leading Marshall’s Office of the General Counsel team and overseeing the legal practice areas of procurement and contract law, partnerships and agreements, personnel law, ethics, fiscal law, employment law, intellectual property, and litigation. 

Marshall’s chief counsel is responsible for coordinating a full range of legal operations affecting the center and its organizations. The chief counsel also serves as a senior member of the NASA Office of the General Counsel’s enterprise leadership team.

Pamela Bourque, chief counsel at NASA’s Marshall Space Flight Center.
Pamela Bourque, chief counsel at NASA’s Marshall Space Flight Center.
NASA

From 2022 to April 2023, Bourque was Marshall’s deputy chief counsel, assisting the chief counsel with managing the legal operations of the center. She also supported the NASA legal enterprise on various senior teams, including the Legal Leadership Board, the Ethics Best Practices Working Group, the Deputy Counsel Forum, and participated as a mentor in NASA’s attorney mentoring program.

From 2005 to 2022, Bourque was the center’s assistant chief counsel for general law and litigation. She was the functional lead for litigation matters and provided Marshall management with legal advice and representation in the areas of personnel law, federal ethics standards, agreements, and other matters. Under her leadership, Marshall’s Ethics Program was recognized by the U.S. Office of Government Ethics with an Ethics Program Award. 

From 1993 to 2005, Bourque was an attorney-adviser at Marshall. She has previously served as president of the North Alabama Chapter of the FBA (Federal Bar Association), as well as the chair of FBA’s Labor Law Symposium for multiple years.

Bourque has been recognized with numerous NASA awards during her career, including the NASA Office of the General Counsel’s Meritorious Service Award, the NASA Exceptional Service Medal, the NASA Silver Achievement Medal, the NASA Space Flight Awareness Launch Honoree Award, the NASA Space Flight Awareness Silver Snoopy Award, the Marshall Engineering Directorate’s Service to Engineering Award, and other performance, on-the-spot, and peer awards. She has been profiled in Women at NASA. 

A native of Broussard, Louisiana, Bourque is a graduate of the U.S. Army Aviation and Missile Command’s Leadership Investment for Tomorrow (LIFT-II) Program, the Simmons Executive Leadership for Women/NASA Fellowship at Simmons College, the Department of Defense Mediator Certification Program, and she is currently enrolled in the Leadership of Greater Huntsville’s Connect Emerging Leaders Program.

Bourque earned a Juris Doctor degree from Tulane University School of Law in New Orleans, Louisiana, where she was a senior fellow. She received her honors baccalaureate degree from the University of Louisiana at Lafayette.

She lives in Madison with her husband, Max Patin. They have two children.

› Back to Top

Thomas Percy Named Systems Engineering and Integration Manager for Human Landing System Program

Thomas Percy has been named as the SE&I (Systems Engineering and Integration) manager for the HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center.

The SE&I office oversees the development and verification of requirements, cross-discipline insight into commercial lander providers, and cross-program integration. The HLS SE&I team is also responsible for integration with the Moon to Mars Program in the areas of mission development, general analyses, and requirements management.

Thomas Percy, Systems Engineering and Integration manager for the Human Landing System Program at NASA’s Marshall Space Flight Center.
Thomas Percy, Systems Engineering and Integration manager for the Human Landing System Program at NASA’s Marshall Space Flight Center.
Credit: NASA/Danielle Burleson

Since 2021, Percy has been the deputy SE&I manager for HLS. From 2020 to 2021, he was the integrated performance lead for HLS, managing the team within SE&I responsible for trajectory analysis, environments, performance assessment, mission development, and metric tracking.

From 2016 to 2020, Percy was a space systems analyst prior to his role as chief architect of the Advanced Concepts Office at Marshall, where he supported the formulation of the HLS Program as well as transportation architecture studies for human Mars missions and the development of various robotic spacecraft concepts.

Prior to joining NASA in 2016, Percy spent 13 years working in private industry at SAIC as a section manager and support contractor to Marshall and Johnson Space Center. He also was a part-time instructor in the Mechanical and Aerospace Engineering Department at the University of Alabama in Huntsville off and on from 2006-2021.

His honors include a NASA Group Achievement Award: Human Landing System Source Evaluation Panel; NASA Exceptional Service medal; NASA Silver Achievement Medal Group: Human Landing System Source Evaluation Panel; and a NASA Group Achievement Award: Mars Basis of Comparison Reference Team.   

A native of Easton, Massachusetts, Percy received a bachelor’s degree in mechanical engineering from Rochester Institute of Technology in Rochester, New York, a master’s in aerospace engineering from the Georgia Institute of Technology in Atlanta, Georgia, and a doctorate in aerospace systems engineering from the University of Alabama in Huntsville.

He and his wife, Erin, live in Madison. They have three children.

› Back to Top

Mission Success is in Our Hands: Chelsi Cassilly

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the second in a Marshall Star series profiling team members featured in the testimonial banners.

Chelsi Cassilly is a planetary protection microbiologist working for Jacobs at Marshall, where she’s been for almost three years. A native of Tennessee, she previously worked at Harvard Medical School in Boston, Massachusetts, as a postdoctoral fellow prior to joining Jacobs. She’s a graduate of Lipscomb University in Nashville, Tennessee, where she earned a bachelor’s degree in molecular biology, and of the University of Tennessee, Knoxville, where she earned a doctoral degree in microbiology.

Chelsi Cassilly is a planetary protection microbiologist working at NASA’s Marshall Space Flight Center.
Chelsi Cassilly is a planetary protection microbiologist working at NASA’s Marshall Space Flight Center.
NASA/Charles Beason

“It’s an honor and privilege to work for Jacobs and NASA,” Cassilly said. “I look forward to work every single day and consider myself exceptionally blessed with this opportunity I’ve been afforded.”

Question: What are some of your key responsibilities?

Cassilly: I support many different projects at Marshall. Primarily I help projects implement planetary protection. This includes the Mars Ascent Vehicle, which is part of the Mars Sample Retrieval Lander; a mission concept for a Europa Lander; and the lunar Human Landing System. I also manage the Planetary Protection Lab at Marshall, which is a fully functional biosafety level 2 lab. Funded by multiple sources, including NASA ROSES (Research Opportunities in Space and Earth Science), Marshall Cooperative Agreement Notices, Marshall Technical Excellence funding, and Jacobs Innovation Grants, I have both completed and continue to support multiple smaller experiments to determine microbial abundance within materials as well as sterilization methods.

Question: How does your work support the safety and success of NASA and Marshall missions?

Cassilly: NASA missions must meet the requirements laid out by headquarters. One subset of requirements on some missions is planetary protection, that is, preventing forward and backward microbial contamination. Marshall is involved with several missions where there are planetary protection requirements to meet. I help the center interpret and implement techniques to meet the requirements. I am currently the only point of contact for this discipline at Marshall, so I take seriously the responsibility of helping engineers understand unfamiliar terminology while also ensuring we are compliant with requirements, therefore helping achieve the goals of our missions.

Question: What does the Mission Success is in Our Hands initiative mean to you?

Cassilly: It means that success is personal. It means every single one of us can contribute in large ways to mission success simply by being ethical and maintaining our integrity as workers and as individuals.

Question: How can we work together better to achieve mission success?

Cassilly: We can support one another by encouraging safety, ethics, a culture of learning, ownership, and integrity within our teams. We can foster an environment where ownership is lauded and correction is not seen as negative, but rather as learning opportunities and areas of improvement. Benchmarking such progress of both individuals and teams, using mistakes and problems to propel us forward, will serve to strengthen teams, develop a sense of pride in our collective mission, and provide clear trajectory for our long-term efforts and goals.

› Back to Top

I am Artemis: Bruce Askins

Growing up, Bruce Askins was passionate about space and oceanography. His desire to explore other worlds always made him want to be an astronaut. Though he did not become an astronaut, Askins has built a 42-year career at NASA, and, as the infrastructure management lead for NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, Askins is an integral part for the next generation of explorers.

Askins and his team are the gatekeepers and protectors of data and responsible for both cyber- security and physical security for the SLS Program. Under Askins’ leadership, his team ensures all data is stored properly, that information about the rocket shared outside NASA is done with proper data markings, and access is given to those that need it.

Bruce Askins
Bruce Askins is the infrastructure management lead for NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center.
NASA/Sam Lott

Askins wasn’t always familiar with the world of infrastructure and cyber security. As a mechanical engineering graduate from the University of Alabama in Huntsville, Askins began his career as part of NASA’s internship program. He considered himself imaginative, or “creatively driven,” which is why Askins originally pursued a career at NASA.

“I always loved the design aspect of my early position in special test equipment,” Askins says. “Back then I drew everything by hand with a pencil before eventually transitioning to computers.”

His creativity and interest in underwater worlds, along with his scuba diver certification, led him to have a hand in designing early test elements for NASA’s Hubble Space Telescope. At the Neutral Buoyancy Simulator, a former underwater training facility at Marshall, Askins interacted with a crew of astronauts supporting Hubble and designed the flight simulation hardware used for crew training on the Canadarm2 robotic arm that is still a part of the International Space Station today.

Askins has been a part of the NASA family for almost half a century and is thrilled to be a part of the next era of space exploration to the Moon under Artemis.

“To explore is one of the greatest things that we can all do, and with the Artemis Generation the sky’s the limit,” Askins said.

SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

NASA’s Tech Demo Streams First Video from Deep Space via Laser

NASA’s Deep Space Optical Communications experiment beamed an ultra-high definition streaming video on Dec. 11 from a record-setting 19 million miles away (or about 80 times the Earth-Moon distance). The milestone is part of a NASA technology demonstration aimed at streaming very high-bandwidth video and other data from deep space – enabling future human missions beyond Earth orbit.

“This accomplishment underscores our commitment to advancing optical communications as a key element to meeting our future data transmission needs,” said NASA Deputy Administrator Pam Melroy. “Increasing our bandwidth is essential to achieving our future exploration and science goals, and we look forward to the continued advancement of this technology and the transformation of how we communicate during future interplanetary missions.”

Members of the DSOC team react to the first high-definition streaming video to be sent via laser from deep space on Dec. 11 at NASA’s Jet Propulsion Laboratory. Sent by the DSOC transceiver aboard the Psyche spacecraft, nearly 19 million miles from Earth, the video features a cat named Taters.
Members of the DSOC (Deep Space Optical Communications) team react to the first high-definition streaming video to be sent via laser from deep space Dec. 11 at NASA’s Jet Propulsion Laboratory. Sent by the DSOC transceiver aboard the Psyche spacecraft nearly 19 million miles from Earth, the video features a cat named Taters.
NASA/JPL-Caltech

The demo transmitted the 15-second test video via a cutting-edge instrument called a flight laser transceiver. The video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 Mbps (megabits per second). Capable of sending and receiving near-infrared signals, the instrument beamed an encoded near-infrared laser to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, where it was downloaded. Each frame from the looping video was then sent “live” to NASA’s Jet Propulsion Laboratory in Southern California, where the video was played in real time.

Deep Space Optical Communications, or DSOC, a NASA technology demonstration riding aboard the Psyche space craft, is using advanced laser communication technology to transmit large amounts of data back to earth. DSOC is the latest in a series of optical communication demonstrations funded by the agency’s TDM (Technology Demonstration Missions) program office at NASA’s Marshall Space Flight Center.

“We just demonstrated a highly advanced data transmission capability that will play an instrumental role in NASA’s boldest missions to deep space, and it shows that DSOC is functioning successfully in a relevant environment,” said Tawnya Laughinghouse, manager of the TDM program office at Marshall. “Streaming an ultra-high definition video from millions of miles away in deep space is no small feat.”

The laser communications demo, which launched with NASA’s Psyche mission Oct. 13, is designed to transmit data from deep space at rates 10 to 100 times greater than the state-of-the-art radio frequency systems used by deep space missions today. As Psyche travels to the main asteroid belt between Mars and Jupiter, the technology demonstration will send high-data-rate signals as far out as the Red Planet’s greatest distance from Earth. In doing so, it paves the way for higher-data-rate communications capable of sending complex scientific information, high-definition imagery, and video in support of humanity’s next giant leap: sending humans to Mars.

“One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.”

Uploaded before launch, the short ultra-high definition video features an orange tabby cat named Taters, the pet of a JPL employee, chasing a laser pointer, with overlayed graphics. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

This 15-second clip shows the first ultra-high-definition video sent via laser from deep space, featuring a cat named Taters chasing a laser with test graphics overlayed. (NASA/JPL-Caltech)

“Despite transmitting from millions of miles away, it was able to send the video faster than most broadband internet connections,” said Ryan Rogalin, the project’s receiver electronics lead at JPL. “In fact, after receiving the video at Palomar, it was sent to JPL over the internet, and that connection was slower than the signal coming from deep space. JPL’s DesignLab did an amazing job helping us showcase this technology – everyone loves Taters.”

There’s also a historical link: Beginning in 1928, a small statue of the popular cartoon character Felix the Cat was featured in television test broadcast transmissions. Today, cat videos and memes are some of the most popular content online.

This latest milestone comes after “first light” was achieved on Nov. 14. Since then, the system has demonstrated faster data downlink speeds and increased pointing accuracy during its weekly checkouts. On the night of Dec. 4, the project demonstrated downlink bit rates of 62.5 Mbps, 100 Mbps, and 267 Mbps, which is comparable to broadband internet download speeds. The team was able to download a total of 1.3 terabits of data during that time. As a comparison, NASA’s Magellan mission to Venus downlinked 1.2 terabits during its entire mission from 1990 to 1994.

“When we achieved first light, we were excited, but also cautious. This is a new technology, and we are experimenting with how it works,” said Ken Andrews, project flight operations lead at JPL. “But now, with the help of our Psyche colleagues, we are getting used to working with the system and can lock onto the spacecraft and ground terminals for longer than we could previously. We are learning something new during each checkout.”

The Deep Space Optical Communications demonstration is the latest in a series of optical communication demonstrations funded by the TDM program under NASA’s Space Technology Mission Directorate and supported by NASA’s SCaN (Space Communications and Navigation) program within the agency’s Space Operations Mission Directorate.

The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by the agency’s Marshall Space Flight Center. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center, managed the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

› Back to Top

NASA Geologist Paves Way for Building on the Moon

By Jessica Barnett

For many at NASA’s Marshall Space Flight Center, a love – be it for space, science, or something else – drew them to the career they’re in today. For geologist Jennifer Edmunson, there were multiple reasons.

Her love for geology dates back to her childhood in Arizona, playing in the mud, fascinated by the green river rocks she would find and how they fit together. As she grew older, her love for astronomy led her to study the regolith and geology of the Moon and Mars in graduate school.

A blonde woman with a black jacket poses in for a headshot in front of a blue background.
Jennifer Edmunson, geologist and MMPACT project manager at NASA’s Marshall Space Flight Center.
NASA

That, in turn, led her to Marshall for her post-doctorate, where she studied how shock processes from meteorite impacts potentially affect scientists’ work to determine the age of rocks using different radioisotope systems. On her first day, she needed help from the center’s IT department, which is how she met Joel Miller, the man she now calls her husband.

“I met him on April Fools’ Day, and he asked me out on Friday the 13th,” Edmunson recalled. “I knew I needed to get a stable job, so I got a job as the junior geologist on the simulant team here at Marshall. That was back in 2009.”

Fourteen years later, they still work at Marshall. He’s now the center’s acting spectrum manager, and she manages the MMPACT (Moon-to-Mars Planetary Autonomous Construction Technology) project. Through MMPACT, Marshall is working with commercial partners and academia to develop and test robotic technology that will one day use lunar soil and 3-D printing technology to build structures on the Moon.

“It’s phenomenal to see the development of the different materials we’ve been working on,” Edmunson said. “We started with this whole array of materials, and now we’re like, ‘OK, what’s the best one for our proof of concept?’”

NASA aims for a proof-of-concept mission to validate the technology and capability by the end of this decade. This mission would involve traveling to the Moon to create a representative element of a landing pad.

MMPACT aims to build lunar infrastructure using the materials readily available on the Moon. This process, known as in-situ resource utilization, allows NASA engineers to use lunar regolith, fine-grained silicate minerals thought to be available in a layer between 10 to 70 feet deep on the lunar surface, to build different structures and infrastructure elements.

A group of people, some wearing sunglasses, all wearing blue shirts stand on a gravel lot outside with a blue sky and green trees behind them.
Marshall geologist and MMPACT project manager Jennifer Edmunson, fourth from right, joined several other scientists for a trip to Stillwater, Montana, earlier this year. Stillwater is known to have rocks like those found on the Moon.
NASA

However, regolith can’t be used like cement here on Earth, as it wouldn’t solidify in the low-pressure environment. So, Edmunson and her team are now looking at microwaves and laser technology to heat the regolith to create solid building materials.

After successfully building a full-scale landing pad on the Moon, MMPACT will likely focus on a vertical structure, like a garage, habitat, or safe haven for astronauts.

“The possibilities are endless,” she said. “There is so much potential for using different materials for different applications. There’s just a wealth of opportunity for anyone who wants to play in the field, really.”

Edmunson hopes to get more lunar regolith first, as NASA is still working with samples from the Apollo missions and simulants based on those samples. She’s also looking forward to Artemis bringing back samples from different parts of the lunar surface because it will provide her team with a wider pool of regolith samples to analyze.

“We want to learn more about different locations on the Moon,” she said. “We have to understand the differences and how that might affect our processes.”

Knowing this will make it easier not just to build landing pads and habitats but to build roadways and the start of a lunar economy, Edmunson said.

A gloved hand holds a handful of white looking synthetic minerals over a orange bucket.
Some minerals are rare on Earth but abundant on the Moon. To study how those minerals could be used for building, scientists rely on simulants, like the synthetic anorthite pictured here.
NASA

“I want there to be sufficient structures there to make things safe for crew, so if we want to build a hotel on the Moon, we could,” she said. “We could have tourists going there, mining districts pulling rare Earth elements from the Moon. We could do that and get a lot of resources that way. I want science to progress, things like building a radio telescope on the far side of the Moon. I want more information on more of the different sites around the Moon, so we can get a be`tter understanding of how the Moon formed and the history of the Moon. We’ve only scratched the surface there.”

There are parts of the Moon that can only be explored in detail by visiting in person, Edmunson explained, and she’s excited to be working at Marshall as that exploration is made possible.

“It’s awesome to be part of this. Honestly, it’s the reason I get out of bed in the morning,” she said. “I was born in ’77, so I missed the Apollo lunar landings. I would love to see humans on the Moon in my lifetime, and on Mars would just be amazing.”

Her advice is simple to anyone considering a career like hers: Just go for it.

“A lot of it comes down to passion and tenacity,” she said. “If you really love what you do and you get to do it every day, you find more enjoyment in your career. I feel like I’m making a difference, and with surface construction at such an infant kind of stage right now, I feel like it’s a contribution that will last for a very long time.”

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Sprightly Stars Illuminate ‘Christmas Tree Cluster’

A new image of NGC 2264, also known as the “Christmas Tree Cluster,” shows the shape of a cosmic tree with the glow of stellar lights. NGC 2264 is, in fact, a cluster of young stars – with ages between about one and five million years old – in our Milky Way about 2,500 light-years away from Earth. The stars in NGC 2264 are both smaller and larger than the Sun, ranging from some with less than a tenth the mass of the Sun to others containing about seven solar masses.

This composite image shows the Christmas Tree Cluster. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image.
This new image of NGC 2264, also known as the “Christmas Tree Cluster,” shows the shape of a cosmic tree with the glow of stellar lights.
X-ray: NASA/CXC/SAO; Optical: T.A. Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A. Wolpa (NOIRLab/NSF/AURA); Infrared: NASA/NSF/IPAC/CalTech/Univ. of Massachusetts; Image Processing: NASA/CXC/SAO/L. Frattare & J.Major

This new composite image enhances the resemblance to a Christmas tree through choices of color and rotation. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image.

Young stars, like those in NGC 2264, are volatile and undergo strong flares in X-rays and other types of variations seen in different types of light. The coordinated, blinking variations shown in this animation, however, are artificial, to emphasize the locations of the stars seen in X-rays and highlight the similarity of this object to a Christmas tree. In reality, the variations of the stars are not synchronized.

This composite image shows the Christmas Tree Cluster. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image.

The variations observed by Chandra and other telescopes are caused by several different processes. Some of these are related to activity involving magnetic fields, including flares like those undergone by the Sun – but much more powerful – and hot spots and dark regions on the surfaces of the stars that go in and out of view as the stars rotate. There can also be changes in the thickness of gas obscuring the stars, and changes in the amount of material still falling onto the stars from disks of surrounding gas.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

› Back to Top

NASA’s 3D-printed Rotating Detonation Rocket Engine Test a Success

NASA has achieved a new benchmark in developing an innovative propulsion system called the Rotating Detonation Rocket Engine (RDRE). Engineers at NASA’s Marshall Space Flight Center successfully tested a novel, 3D-printed RDRE for 251 seconds (or longer than four minutes), producing more than 5,800 pounds of thrust.

That kind of sustained burn emulates typical requirements for a lander touchdown or a deep-space burn that could set a spacecraft on course from the Moon to Mars, said Marshall combustion devices engineer Thomas Teasley, who leads the RDRE test effort at the center.

A stream of white-hot fire is coming out of Rotaging Detonation Rocket Engine combustor.
Engineers at NASA’s Marshall Space Flight Center conduct a successful, 251-second hot fire test of a full-scale Rotating Detonation Rocket Engine combustor in fall 2023, achieving more than 5,800 pounds of thrust.
NASA

RDRE’s first hot fire test was performed at Marshall in the summer of 2022 in partnership with In Space LLC and Purdue University, both of Lafayette, Indiana. That test produced more than 4,000 pounds of thrust for nearly a minute.

The primary goal of the latest test, Teasley noted, is to better understand how to scale the combustor to different thrust classes, supporting engine systems of all types and maximizing the variety of missions it could serve, from landers to upper stage engines to supersonic retropropulsion, a deceleration technique that could land larger payloads – or even humans – on the surface of Mars.

Test stand video captured at Marshall shows ignition of a full-scale Rotating Detonation Rocket Engine combustor, which was fired for a record 251 seconds and achieved more than 5,800 pounds of thrust. (NASA)

“The RDRE enables a huge leap in design efficiency,” he said. “It demonstrates we are closer to making lightweight propulsion systems that will allow us to send more mass and payload further into deep space, a critical component to NASA’s Moon to Mars vision.”

Engineers at NASA’s Glenn Research Center and Venus Aerospace of Houston, Texas, are working with Marshall to identify how to scale the technology for higher performance.

RDRE is managed and funded by the Game Changing Development Program within NASA’s Space Technology Mission Directorate.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Marshall Research Scientist Enables Large-Scale Open Science
      Rahul Ramachandran is a senior research scientist at NASA’s Marshall Space Flight Center. NASA By Jessica Barnett 
      Most people use tools at work, whether it’s a hammer, a pencil, or a computer. Very few seek a doctorate degree in creating new tools for the job.
      Using that degree to make it easier for people around the world to access and use the vast amounts of data gathered by NASA? Well, that might just be unheard of if you didn’t know someone like Rahul Ramachandran, a senior research scientist in the Earth Science branch at NASA’s Marshall Space Flight Center.
      “My undergrad was in mechanical engineering. I wanted to do industrial engineering, so I came to the U.S. for that, but I didn’t like the field that much,” Ramachandran explained. “It was by chance somebody suggested meteorology.”
      That led him to learn about atmospheric science as well, but it was the 1990s and the technology of the time was very limiting. So, Ramachandran set out to learn more about computers and how to better analyze data.
      “The limitations effectively prompted me to get a degree in computer science,” he said. “I now had science, engineering, and computer science in my background. Then, over the years, I got more and more interested in the tools and capabilities that can help not only manage data but also how you extract knowledge from these large datasets.”
      Fast forward to today, and Ramachandran is an award-winning scientist helping to ensure the vast amounts of data collected by NASA are accessible and searchable for scientists around the world.
      “I never would have thought that I could ever get a job working at an agency like NASA,” he said. “You get to work with some of the smartest people in the world, and you get to work on really hard problems. I think that’s what makes it so intellectually stimulating.”
      Over the course of his career, he has worked on many different projects focused on scientific data management, designed frameworks for large scale scientific analysis, and developed machine learning applications. Recently, he worked with team members at IBM Research to create a geospatial AI foundation model that could turn NASA satellite data into maps of natural disasters or other environmental changes. He also established the Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA, which supports NASA’s Earth Science Data Systems Program by collaborating with other agencies and partners to boost the scientific benefits of data collected by NASA’s missions and experiments.
      Ramachandran received the 2023 Greg Leptoukh Lecture award for his accomplishments, an honor he attributes in large part to the many collaborators and mentors he’s had over the years.
      During his presentation, Ramachandran spoke about the ways in which artificial intelligence can help NASA continue to adapt and support open science.
      “We’ve seen what people can do with ChatGPT, which is built on a language foundation model, but there are AI foundation models for science that can be adapted into analyzing scientific data so we can augment what we are doing now in a much more efficient manner,” he said. “It requires a bit of a change in people’s mindset. How do we rethink our processes? How do we rethink a strategy for managing data? How will people search and analyze data information differently? All those things have to be thought of with a different perspective now.”
      Such work will have benefits not only for NASA but for those who use the data collected by the agency. Ramachandran said he recently got an email from someone in Africa who was able to use NASA’s data and the geospatial AI foundation model for detecting locust breeding grounds on the continent.
      “NASA has produced valuable science data that we make available to the community to use,” Ramachandran said. “I think the future would be that we not only provide the data, but we also provide these AI models that allow the science community to use the data effectively, whether it’s doing basic research or building applications like the locust breeding ground prediction.”
      As that future nears, Ramachandran and his team will be ready to help others in the science community find the data they need to learn and build the tools they’ll use for years to come.
      Share








      Details
      Last Updated Jun 20, 2024 Related Terms
      Open Science Explore More
      2 min read NASA’s Repository Supports Research of Commercial Astronaut Health  


      Article


      1 week ago
      4 min read NASA, IBM Research to Release New AI Model for Weather, Climate


      Article


      4 weeks ago
      4 min read AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change


      Article


      2 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      20 Min Read The Marshall Star for June 18, 2024
      California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      By Savannah Bullard
      After two days of live competitions, two teams from southern California are heading home with a combined $1.5 million from NASA’s Break the Ice Lunar Challenge. 
      Since 2020, competitors from around the world have competed in this challenge with the common goal of inventing robots that can excavate and transport the icy regolith on the Moon. The lunar South Pole is the targeted landing site for crewed Artemis missions, so utilizing all resources in that area, including the ice within the dusty regolith inside the permanently shadowed regions, is vital for the success of a sustained human lunar presence.
      The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville. With the Terra Engineering team at the awards ceremony are from left, Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha, and Majed El-Dweik, Alabama A&M University’s vice president of Research & Economic Development.NASA/Jonathan Deal On Earth, the mission architectures developed in this challenge aim to help guide machine design and operation concepts for future mining and excavation operations and equipment for decades.
      “Break the Ice represents a significant milestone in our journey toward sustainable lunar exploration and a future human presence on the Moon,” said Joseph Pelfrey, center director of NASA’s Marshall Space Flight Center. “This competition has pushed the boundaries of what is possible by challenging the brightest minds to devise groundbreaking solutions for excavating lunar ice, a crucial resource for future missions. Together, we are forging a future where humanity ventures further into the cosmos than ever before.”
      The final round of the Break the Ice competition featured six finalist teams who succeeded in an earlier phase of the challenge. The competition took place at the Alabama A&M Agribition Center in Huntsville on June 11 and 12, where each team put their diverse solutions to the test in a series of trials, using terrestrial resources like gravity-offloading cranes, concrete slabs, and a rocky track with tricky obstacles to mimic the environment on the Moon.
      The husband-and-wife duo of Terra Engineering took home the top prize for their “Fracture” rover. Team lead Todd Mendenhall competed in NASA’s 2007 Regolith Excavation Challenge, facilitated through NASA’s Centennial Challenges, which led him and Valerie Mendenhall to continue the pursuit of solutions for autonomous lunar excavation.
      A small space hardware business, Starpath Robotics, earned the second-place prize for its four-wheeled rover that can mine, collect, and haul material. The team, led by Saurav Shroff and lead engineer Mihir Gondhalekar, developed a robotic mining tool that features a drum barrel scraping mechanism for breaking into the tough lunar surface. This allows the robot to mine material quickly and robustly without sacrificing energy.
      “This challenge has been pivotal in advancing the technologies we need to achieve a sustained human presence on the Moon,” said Kim Krome, the Acting Program Manager for NASA’s Centennial Challenges. “Terra Engineering’s rover, especially, bridged several of the technology gaps that we identified – for instance, being robust and resilient enough to traverse rocky landscapes and survive the harsh conditions of the lunar South Pole.”
      Starpath Robotics earned the second place prize for its four-wheeled rover that can mine, collect, and haul material during the final phase of NASA’s Break the Ice Lunar Challenge. From left, Matt Kruszynski, Saurav Shroff, Matt Khudari, Alan Hsu, David Aden, Mihir Gondhalekarl, Joshua Huang, and Aakash Ramachandran.NASA/Jonathan Deal Beyond the $1.5 million in prize funds, three teams will be given the chance to use Marshall Space Flight Center’s thermal vacuum (TVAC) chambers to continue testing and developing their robots. These chambers use thermal vacuum technologies to create a simulated lunar environment, allowing scientists and researchers to build, test, and approve hardware for flight-ready use.
      The following teams performed exceptionally well in the excavation portion of the final competition, earning these invitations to the TVAC facilities:
      Terra Engineering (Gardena, California) Starpath Robotics (Hawthorne, California) Michigan Technological University – Planetary Surface Technology Development Lab (Houghton, Michigan) “We’re looking forward to hosting three of our finalists at our thermal vacuum chamber, where they will get full access to continue testing and developing their technologies in our state-of-the-art facilities,” said Break the Ice Challenge Manager Naveen Vetcha, who supports NASA’s Centennial Challenges through Jacobs Space Exploration Group. “Hopefully, these tests will allow the teams to take their solutions to the next level and open the door for opportunities for years to come.”
      NASA’s Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center, with support from NASA’s Kennedy Space Center. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors. Alabama A&M University, in coordination with NASA, supports the final competitions and winner event for the challenge.
      Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications.
      › Back to Top
      NASA Announces Winners of 2024 Student Launch Competition
      Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, amateur rockets on April 13, just north of NASA’s Marshall Space Flight Center, as part of the agency’s annual Student Launch competition.
      Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission.
      High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center to participate in the agency’s annual Student Launch competition April 13.Credits: NASA/Charles Beason “These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page. NASA presented the 2024 Student Launch challenge award winners in a virtual award ceremony June 7.
      Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      The complete list of award winners are as follows:
      2024 Overall Winners
      First place: University of Notre Dame, Indiana Second place: Iowa State University, Ames Third place: University of North Carolina at Charlotte 3D Printing Award:
      College Level:
      First place: University of Tennessee Chattanooga Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Altitude Award
      College Level:
      First place: Iowa State University, Ames Middle/High School Level:
      First place: Morris County 4-H, Califon, New Jersey Best-Looking Rocket Award:
      College Level:
      First place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles American Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award:
      College Level:
      First place: University of Colorado Boulder Second place: Vanderbilt University, Nashville, Tennessee Third place: Carnegie Mellon, Pittsburgh, Pennsylvania Judge’s Choice Award:
      Middle/High School Level:
      First place: Cedar Falls High School, Cedar Falls, Iowa Second place: Young Engineers in Action, LaPalma, California Third place: First Baptist Church of Manchester, Manchester, Connecticut Project Review Award:
      College Level:
      First place: University of Florida, Gainesville AIAA Reusable Launch Vehicle Award:
      College Level:
      First place: University of Florida, Gainesville Second place: University of North Carolina at Charlotte Third place: University of Notre Dame, Indiana AIAA Rookie Award:
      College Level:
      First place: University of Colorado Boulder Safety Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of Florida, Gainesville Third place: University of North Carolina at Charlotte Social Media Award:
      College Level:
      First place: University of Colorado Boulder Middle/High School Level:
      First place: Newark Memorial High School, Newark, California STEM Engagement Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of North Carolina at Charlotte Third place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia Service Academy Award:
      First place: United States Air Force Academy, USAF Academy, Colorado
      Vehicle Design Award:
      Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Second place: Explorer Post 1010, Rockville, Maryland Third place: Plantation High School, Plantation, Florida Payload Design Award:
      Middle/High School Level:
      First place: Young Engineers in Action, LaPalma, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Spring Grove Area High School, Spring Grove, Pennsylvania Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      › Back to Top
      Keith Savoy Named Deputy Director at Michoud Assembly Facility
      Keith Savoy has been named deputy director of NASA’s Michoud Assembly Facility, effective June 16.
      Savoy will assist in managing the day-to-day operations of one of the world’s largest manufacturing facilities, where key elements of NASA’s Space Launch System (SLS), and Orion spacecraft are built. Michoud, a multi-tenant manufacturing site sitting on 829 acres with over 2 million square feet of manufacturing space, is managed by NASA’s Marshall Space Flight Center and provides facility infrastructure and capacity for federal, state, academic, and technology-based industry partners.
      Keith Savoy has been named deputy director of NASA’s Michoud Assembly Facility.NASA Savoy was the chief operating officer of Michoud Assembly Facility from 2022-2024, where he oversaw the day-to-day administrative and operational functions of the NASA-owned facility, helping sustain SLS and Orion production efforts and coordinating requirements and logistics with Michoud tenant leadership for approximately 3,500 Michoud employees.
      He previously served as manager of the Office of Center Operations of Michoud from 2016-2022. His responsibilities included managing the facility’s planning, maintenance, design, construction, and engineering. Savoy also oversaw energy and water conservation, environmental permitting and compliance, industrial hygiene, and medical, security, and logistics services, where he was responsible for managing over $350 million of supplemental funding projects sitewide.
      Savoy also held the position of lead engineer, Logistics and Operation Planning for NASA from 2007-2016 at Michoud as an expert consultant for all engineering aspects of the facility. He managed multi-phase projects and helped advance aerospace manufacturing at Michoud to meet the complex requirements of SLS and Orion multi-purpose crew vehicle programs, ensuring environmental compliance. Savoy worked closely with local, state, and federal environmental regulatory agencies to identify and resolve engineering and environmental issues. His expertise was a key contributor to ensuring NASA’s sustainable and environmental goals were achieved.
      Prior to working for NASA, Savoy held several positions of increasing responsibility with Lockheed Martin from 1988-2007. As manager of Operational Planning and Layout, he was responsible for managing the Construction of Facilities. This required developing and implementing plans, outlining scope-of-work, overseeing large-scale project budgets, and Project Definition Rating assessment/score and 1509 development. Savoy implemented Six Sigma & Lean principles concepts to achieve many successes and identified innovative solutions and best practices to satisfy customer requirements. Savoy was also the manager of the Infrastructure Enhancement Team where he managed over 160 personnel and a $10 million budget.
      Savoy has a Master of Science in environmental management from National Technological University in Fort Collins, Colorado, a bachelor of science in electrical engineering from the University of Louisiana-Lafayette, and a technical degree in industrial instrumentation from International Technical Institute in Baton Rouge, Louisiana.
      Throughout his career, Savoy has received various awards including the NASA Honor Award Outstanding Leadership Medal, Director’s Commendation Honor Award, Safety Flight Awareness Awards, and several Silver Medal Group Achievement Awards.
      › Back to Top
      ‘NASA in the Park’ Returns to Rocket City June 22
      NASA in the Park is coming back to Big Spring Park East in Huntsville, Alabama, on June 22, from 10 a.m. to 2 p.m. CDT. The event is free and open to the public.
      NASA’s Marshall Space Flight Center, its partners, and collaborators will fill the park with space exhibits, music, food vendors, and hands-on activities for all ages. Marshall is teaming up with Downtown Huntsville Inc. for this unique celebration of space and the Rocket City.
      “NASA in the Park gives us the opportunity to bring our work outside the gates of Redstone Arsenal and thank the community for their continuing support,” Marshall Director Joseph Pelfrey said. “It’s the first time we’ve held the event since 2018, and we look forward to sharing this experience with everyone.”
      Pelfrey will kick the event off with local leaders on the main stage. NASA speakers will spotlight topics ranging from space habitats to solar sails, and local rock band Five by Five will perform throughout the day.
      “NASA Marshall is leading the way in this new era of space exploration, for the benefit of all humankind,” Pelfrey said. “We are proud members of the Rocket City community, which has helped us push the boundaries of science, technology, and engineering for nearly 65 years.”
      › Back to Top
      Mission Success is in Our Hands: Baraka Truss
      By Wayne Smith
      Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in testimonial banners placed around the center. This is the last in a Marshall Star series profiling team members featured in the testimonial banners. The Mission Success team also awards the Golden Eagle Award on a quarterly basis to Marshall and contractor personnel who are nominated by their peers or management. Candidates for this award have made significant, identifiable contributions that exceed normal job expectations to advance flight safety and mission assurance. Nominations for 2024 are open now online on Inside Marshall.
      Baraka Truss is the Avionics and Software Branch chief at NASA’s Marshall Space Flight Center. NASA/Charles Beason Baraka Truss is the Avionics and Software Branch chief in the Safety and Mission Assurance Organization, Vehicle Systems Department, at NASA’s Marshall Space Flight Center. Her key responsibilities include being viewed as a leadership role model, “demonstrating commitment to the mission and NASA’s core values, creating the most impact for the greater agency, and engaging in activities that promote supervisory excellence and value beyond the immediate organization.”
      Truss has worked at Marshall for 28 years. Her previous roles have been software engineer, Software Engineering Process Group lead, special assistant to the center director, Independent Assessment Team lead, Software Quality Discipline lead engineer, Software Assurance Team lead, and     SLS (Space Launch System) Software chief safety officer.
      A native of Montgomery, Alabama, Truss earned a bachelor’s and master’s degree in computer science from Alabama A&M University in Huntsville.
      Question: How does your work support the safety and success of NASA and Marshall missions?
      Truss: My work involves daily managing and interactions with the avionics and software team members whose mission is to ensure the safety of hardware and software for various programs and projects at Marshall and NASA.
      Question: What does the initiative campaign “Mission Success is in Our Hands” mean to you?
      Truss: That when risks arise, we should be sure to listen to all sides and make informed decisions, be held accountable, and speak up for what is safe when we need to do so.
      Question: Do you have a story or personal experience you can share that might help others understand the significance of mission assurance or flight safety? What did you learn from it?
      Truss: In my experience, mission assurance requires you to “believe the unlikely.” I have learned that believing what you have never seen requires you to stretch your imagination, because we are prone to discount and devalue things that we have not seen. We are skeptical about things that have never been seen, never been done, never been achieved, or never been accomplished.
      Because according to our limited logic if it’s never been seen, never been done, never been achieved, or never been accomplished, then it’s not likely to be seen, not likely to be done, not likely to be achieved, and not likely to be accomplished. Therefore, we see no need to attempt it, try it, believe it, or invest in it because while we’ll acknowledge that it’s possible, we quickly add it’s not probable, because our idea of likelihood is limited by our experience. My experiences working for NASA have stretched me to an amazing place of accountability, assurance, and mission success.
      Question: How can we work together better to achieve mission success?
      Truss: Again, by listening to all sides and making informed decisions, being held accountable, and speaking up for what is safe when we need to do so.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      That’s the Spirit: Marshall Team Members Show Support at Community Softball Game
      NASA shows its team spirit during the Armed Forces Celebration Community Softball Game on June 12 at Toyota Field. Marshall Space Flight Center’s Robert Champion and Jason Adam joined Team Redstone to take on the North Alabama Rockets, made up of community leaders. (Huntsville Sports Commission)
      › Back to Top
      Coming in Hot: NASA’s Chandra Checks Habitability of Exoplanets
      This graphic shows a three-dimensional map of stars near the Sun. These stars are close enough that they could be prime targets for direct imaging searches for planets using future telescopes. The blue haloes represent stars that have been observed with NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. The yellow star at the center of this diagram represents the position of the Sun. The concentric rings show distances of 5, 10, and 15 parsecs (one parsec is equivalent to roughly 3.2 light-years).
      Astronomers are using these X-ray data to determine how habitable exoplanets may be based on whether they receive lethal radiation from the stars they orbit, as described in a press release. This type of research will help guide observations with the next generation of telescopes aiming to make the first images of planets like Earth.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows a three-dimensional map of stars near the Sun on the left side of the screen and a dramatic illustration of a star with a planet orbiting around it on the right side.Movie: Cal Poly Pomona/B. Binder; Illustration: NASA/CXC/M.Weiss Researchers examined stars that are close enough to Earth that telescopes set to begin operating in the next decade or two – including the Habitable Worlds Observatory in space and Extremely Large Telescopes on the ground – could take images of planets in the stars’ so-called habitable zones. This term defines orbits where the planets could have liquid water on their surfaces.
      There are several factors influencing what could make a planet suitable for life as we know it. One of those factors is the amount of harmful X-rays and ultraviolet light they receive, which can damage or even strip away the planet’s atmosphere.
      Based on X-ray observations of some of these stars using data from Chandra and XMM-Newton, the research team examined which stars could have hospitable conditions on orbiting planets for life to form and prosper. They studied how bright the stars are in X-rays, how energetic the X-rays are, and how much and how quickly they change in X-ray output, for example, due to flares. Brighter and more energetic X-rays can cause more damage to the atmospheres of orbiting planets.
      The researchers used almost 10 days of Chandra observations and about 26 days of XMM observations, available in archives, to examine the X-ray behavior of 57 nearby stars, some of them with known planets. Most of these are giant planets like Jupiter, Saturn or Neptune, while only a handful of planets or planet candidates could be less than about twice as massive as Earth.
      These results were presented at the 244th meeting of the American Astronomical Society meeting in Madison, Wisconsin, by Breanna Binder (California State Polytechnic University in Pomona).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge, Massachusetts and flight operations from Burlington, Massachusetts.
      › Back to Top
      NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande do Sul, leaving thousands of people without food, water, or electricity. In the following days, NASA teams provided data and imagery to help on-the-ground responders understand the disaster’s impacts and deploy aid.
      Building on this response and similar successes, on June 13, NASA announced a new system to support disaster response organizations in the U.S. and around the world.
      Members of the Los Angeles County Fire Department’s Urban Search and Rescue team in Adiyaman, Turkey, conducting rescue efforts in the wake of powerful earthquakes that struck the region in February 2023. NASA provided maps and data to support USAID and other regional partners during these earthquakes.USAID “When disasters strike, NASA is here to help – at home and around the world,” said NASA Administrator Bill Nelson. “As challenges from extreme weather grow, so too does the value of NASA’s efforts to provide critical Earth observing data to disaster-response teams on the frontlines. We’ve done so for years. Now, through this system, we expand our capability to help power our U.S. government partners, international partners, and relief organizations across the globe as they take on disasters – and save lives.”
      The team behind NASA’s Disaster Response Coordination System gathers science, technology, data, and expertise from across the agency and provides it to emergency managers. The new system will be able to provide up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events.
      “The risk from climate-related hazards is increasing, making more people vulnerable to extreme events,” said Karen St. Germain, director of NASA’s Earth Science Division. “This is particularly true for the 10% of the global population living in low-lying coastal regions who are vulnerable to storm surges, waves and tsunamis, and rapid erosion. NASA’s disaster system is designed to deliver trusted, actionable Earth science in ways and means that can be used immediately, to enable effective response to disasters and ultimately help save lives.”
      Agencies working with NASA include the Federal Emergency Management Agency, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey, and the U.S. Agency for International Development – as well as international organizations such as World Central Kitchen.
      “With this deliberate and structured approach, we can be even more effective in putting Earth science into action,” said Josh Barnes, at NASA’s Langley Research Center. Barnes manages the Disaster Response Coordination System.
      NASA Administrator Bill Nelson delivers remarks June 13 during an event launching a new Disaster Response Coordination System that will provide communities and organizations around the world with access to science and data to aid disaster response. NASA/Bill Ingalls NASA Disasters Team Aiding Brazil
      When the floods and landslides ravaged parts of Brazil in May, officials from the U.S. Southern Command – working with the U.S. Space Force and Air Force, and regional partners – reached out to NASA for Earth-observing data.
      NASA’s response included maps of potential power outages from the Black Marble project at NASA’s Goddard Space Flight Center. Disaster response coordinators at NASA Goddard also reviewed high-resolution optical data – from the Commercial Smallsat Data Acquisition Program – to map more than 4,000 landslides.
      Response coordinators from NASA’s Jet Propulsion Laboratory and the California Institute of Technology produced flood extent maps using data from the NASA and U.S. Geological Survey Landsat mission and from ESA’s (the European Space Agency) Copernicus Sentinel-2 satellite. Response coordinators at NASA’s Johnson Space Center also provided photographs of the flooding taken by astronauts aboard the International Space Station.
      Building on Previous Work
      The Brazil event is just one of hundreds of responses NASA has supported over the past decade. The team aids decision-making for a wide range of natural hazards and disasters, from hurricanes and earthquakes to tsunamis and oil spills. 
      “NASA’s Disasters Program advances science for disaster resilience and develops accessible resources to help communities around the world make informed decisions for disaster planning,” said Shanna McClain, manager of NASA’s Disasters Program. “The new Disaster Response Coordination System significantly expands our efforts to bring the power of Earth science when responding to disasters.”
      › Back to Top
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 23 min read
      Summary of the 2023 GEDI Science Team Meeting
      Introduction
      The 2023 Global Ecosystem Dynamics Investigation (GEDI) Science Team Meeting (STM) took place October 17–19, 2023, at the University of Maryland, College Park (UMD), in College Park, MD. Upwards of 80 people participated in the hybrid meeting (around 50 in-person and the rest virtually). Included among them were GEDI Science Team (ST) members, collaborators, and stakeholders – see Photo. The primary goals of the meeting included providing a status update on the GEDI instrument aboard the International Space Station (ISS), receiving final project updates from the inaugural cohort of the GEDI completed ST, and understanding the present status and future goals of data product development.
      After a short mission status update, the remainder of this article will summarize the content of the STM. For those desiring more information on these topics, some of the full meeting presentations are posted online. Readers can also contact the GEDI ST with specific questions.
      Photo. GEDI Science Team Meeting in-person and virtual attendees. Photo credit: Talia Schwelling Mission Status Update: GEDI Given New Lease on Life
      A lot has changed since the publication of the last GEDI STM summary. (See Summary of the GEDI Science Team Meeting in the July–August 2022 issue of The Earth Observer [Volume 34, issue 4, pp. 20–24]). When the GEDI ST convened in November 2022, the fate of GEDI was hanging in the balance, with the plan being to release GEDI from the ISS at the end of its second extension period.
      NASA saved the instrument, however, and a new plan went into effect: in order to extend its tenure on the ISS, the GEDI mission entered a temporary period of “hibernation” in March 2023 after nearly four years in orbit. This hibernation period and movement of the instrument from Exposed Facility Unit (EFU)-6 (operating location) to EFU-7 (storage location) made way for another mission – see Figure 1. (UPDATE: After being in storage for roughly 13 months, the GEDI instrument was returned to its original location on the Japanese Experiment Module–Exposed Facility (JEM–EF) on Earth Day this year, April 22, 2024, and is now once again back to normal science operations using its three lasers.)
      Figure 1. NASA’s GEDI instrument was moved from EFU-6 to EFU-7 on the ISS on March 17, 2023, where it remained in hibernation for 13 months until its recent reinstallation to EFU-6 on April 22, 2024. The instrument is once again back to normal science operations using its three lasers. Figure credit: NASA As The Earth Observer reported in 2023, data from GEDI are being used for a wide range of applications, including biomass estimation, habitat characterization, and wildfire prediction (See page 4 of The Editor’s Corner in the March–April 2023 issue of The Earth Observer [Volume 35,Issue 2, pp. 1–4]. This section also reports on GEDI’s extension via out-of-cycle Senior Review in 2022). GEDI data is used to develop maps to quantify biomass that are unique in both their accuracy and their explicit characterization of uncertainty and are a key component in the estimation of aboveground carbon stocks, as absorbed carbon is used to drive plant growth and is stored as biomass – see Figure 2. These estimations help quantify the impacts of deforestation and subsequent regrowth on atmospheric carbon dioxide (CO2) concentration. NASA’s choice to extend the GEDI mission has significantly broadened the capacity to collect more of these important data.
      Figure 2. Country-wide estimates of total aboveground biomass in petagrams (Pg) using GEDI Level-4B Version 2.1 dataset (GEDI_L4B_AGB). Figure credit: ORNL DAAC DAY ONE
      GEDI Mission Operations, Instrument Status, and Data Level Updates
      Ralph Dubayah [UMD—GEDI Principal Investigator (PI)] opened the meeting with a summary of the current status of the mission and GEDI data products. After reviewing the details of GEDI’s hibernation (described in the previous section) he went on to describe what GEDI has accomplished over the past 4.5 years of operations, noting that the instrument collected over 26 billion footprints over the land surface.
      All the data collected by GEDI during its first epoch (i.e., before its hibernation) have been processed and released to the appropriate Distributed Active Archives Centers (DAACs) as Version 2 (V2) products. (To learn more about the DAACs and other aspects of Earth Science data collection and processing, see Earth Science Data Operations: Acquiring, Distributing, and Delivering NASA Data for the Benefit of Society, in the March–April 2017 issue of The Earth Observer, [Volume 29, Issue 2, pp. 4–18]. The DAACs – including URL links to each – are listed in a Table on page 7–8 of this issue). The two DAACs directly involved with GEDI data processing are the Land Processes DAAC (LP DAAC) and Oak Ridge National Laboratory (ORNL) DAAC. The LP DAAC houses GEDI Level-1 (L1) data, which consists of geolocated waveforms, and L2 data, which is broken down into L2A and L2B. L2A data includes ground elevation, canopy height, and relative height metrics. (Waveform measurements are described in detail in a sidebar on page 32 of the Summary of the Second GEDI Science Team Meeting in the November–December 2016 issue of The Earth Observer [Volume 28, Issue 6, pp. 31–36].) L2B data includes canopy cover fraction (CCF) and leaf area index (LAI). The ORNL DAAC houses GEDI L3 gridded land surface metrics data, L4A footprint level aboveground biomass density data, and L4B gridded aboveground biomass density data – e.g., see Figure 2.
      Dubayah went on to explain that while GEDI hibernated, the mission team would work to enhance existing data products as well as produce new products. Version 3 (V3) datasets for all data products are expected to be released by the fall of 2024, and new data products are in development, including a waveform structural complexity index (WSCI) and a topography and canopy height product that blends data from GEDI and the Ice, Clouds, and land Elevation Satellite–2 (ICESat–2) mission. A new dataset, the GEDI L4C footprint level waveform structural complexity index (WSCI) product, was added to the ORNL DAAC catalogue in May 2024. To further improve data quality and coverage, the GEDI team is hoping to organize an airborne lidar field campaign to southeast Asia in the coming years. Dubayah concluded his updates by highlighting a set of six papers published in 2023 in Nature and Science family or partner journals that focused on the use of GEDI data. Visit our website for a comprehensive list of publications related to GEDI.
      After receiving a general update from the mission PI, the next several presentations gave meeting participants a more in-depth look at GEDI science data planning and individual data products. Scott Luthcke [NASA’s Goddard Space Flight Center (GSFC)—GEDI Co-Investigator (Co-I)] presented status updates for the GEDI Science Operating Center (SOC), including the Science Planning System (SPS) and Science Data Processing System (SDPS) automation, development, and processing. In addition, he reported on the status of the L1 geolocated waveform data product and the L3 gridded land surface metrics product. At the time of this meeting, the SPS had completed operations through mission week 223 – almost 4.5 years of data – and was beginning to transition to improving processes on the back end while GEDI hibernates. The SDPS had completed processing and delivery of all V2 data products to the LP DAAC and ORNL DAAC.
      Luthcke reported on GEDI’s current observed and estimated geolocation performance, including detailed summaries of component analysis and steps towards improving Precision Orbit Determination (POD), Precision Attitude Determination (PAD), Pointing Calibration, time-tag correction, and Oven Controlled Crystal Oscillator (OCXO) calibration. GEDI passes over Salar de Uyuni, the world’s largest salt flat located in Bolivia – see Figure 3, are being used to assess the PAD high-frequency and low-frequency errors. Estimated errors are shown to be consistent with observed geolocation errors. Finally, Luthcke gave a summary of completed L3 products and new wall-to-wall 1-km (0.62-mi) resolution and high-resolution products.
      Figure 3. Salar de Uyuni, the world’s largest salt flat as seen from the International Space Station. Figure credit: Samantha Cristoforetti/ESA/NASA John Armston [UMD—GEDI Co-I] updated attendees on GEDI L2 products. L2A consists of elevation and height metrics, and L2B consists of canopy cover and vertical profile metrics. To assess GEDI ground and canopy top measurement accuracy and improve algorithm performance, the mission team is using data collected from NASA Land, Vegetation, and Ice Sensor (LVIS) campaigns from 2016 to present. Armston reported that L2B estimates of canopy and ground reflectance were completed for the first mission epoch (April 2019–March 2023) and the GEDI team continues to work on algorithm improvements for cover estimates in challenging conditions (e.g., steep slopes). Data users can expect improved waveform processing for ground elevation and canopy height, new reflectance estimation, and revised quality metrics and flags in the L2A and L2B not-yet-released V3 products.
      Jim Kellner [Brown University—GEDI Co-I] shared the current status of and planned algorithm improvements to the L4A data product, or the footprint-level aboveground biomass density product. The algorithm theoretical basis document for L4A data products was published in November 2022; it describes how models were developed and the importance of quality filtering. L4A data product development continues in tandem with updates to L2A data and improvements to existing calibration and validation data and ingestion of new data.
      Sean Healey [U.S. Forest Service—GEDI Co-I] reviewed coverage and uncertainties of the recently produced V2 L4B data products – see Figure 4. Ongoing GEDI-relevant research includes:
      investigating a statistical method called bootstrapping, which may allow more complex types of models; conducting theoretical statistical studies aimed at decomposing mean square error for model-based methods; and developing ways to estimate biomass change over time – which will become more important as the extended mission potentially stretches to a decade. Figure 4. Gridded mean aboveground biomass density [top] and standard error of the mean [bottom] from Version 2.1 of the GEDI L4B Gridded Aboveground Biomass Density product, published on October 29, 2023. Figure credit: ORNL DAAC Competed Science Team Presentations—Session 1
      This GEDI STM was the last convergence of the first iteration of the GEDI competed ST. Attendees received final in-person updates on the cohort’s projects and plans for future research. Over the course of the three-day meeting, there were several sections dedicated to Competed ST Presentations. For purposes of organization in this report, each section has been given a session number. 
      Taejin Park [NASA’s Ames Research Center (ARC) and Bay Area Environmental Research Institute (BAERI)] kicked off the ST presentations with an overview of his group’s progress in enhancing the predictions of forest height and aboveground biomass by incorporating GEDI L2, L3, and L4 data products into a process-based model, called Allometric Scaling Resource Limitation (ASRL), over the contiguous United States (CONUS). The ASRL model effectively captures large-scale, maximum tree size distribution and facilitates prognostic applications for predicting future aboveground biomass changes under various climate scenarios. Park also described collaborative research efforts with international partners  to map changes in aboveground biomass in tropical and temperate forests using a carbon management systems (CMS).
      Kerri Vierling [University of Idaho] shared the results from her team’s projects demonstrating the use of GEDI data fusion products to describe patterns of bird and mammal distributions in western U.S. forests. The focal species for these projects include a suite of vertebrate forest carnivores, prey, and ecosystem engineer species that modify their environments in ways that create habitat for other creatures, e.g., woodpeckers – see Figure 5. Many of these species are of interest for management by a variety of state and federal agencies. Vierling also discussed ongoing analyses identifying biodiversity hotspots and land ownership patterns.
      Figure 5. A Female downy woodpecker creates a tree cavity that other organisms may use in the future for habitat. Woodpecker species are great examples of ecosystem engineers. Figure credit: Doug Swartz/Macaulay Library at the Cornell Lab or Ornithology (ML 58304661) Sean Healey presented on his competed ST research on Online Biomass Inference using Waveforms and iNventory (OBI-WAN), a Google Earth Engine application. This forest-carbon reporting tool harnesses GEDI waveforms, biomass models, and statistics to make estimates of mean biomass and biomass change for areas specified by online users. Healey explained the statistical methods applied to operate OBI-WAN and gave context for the use of sensor fusion to provide biomass change information that is critical for monitoring, reporting, and verification.
      Keith Krause [Battelle] presented his work evaluating vertical structural similarity of LVIS classic and GEDI large-footprint waveforms. At the GEDI and LVIS footprint scale (20–23 m, or 65–75 ft, spot on the ground), lidar waveforms over forests represent canopies of leaves and branches from several trees. Krause presented results comparing waveforms against each other to show similarities in shape (i.e., if the trees in their footprints have a similar vertical structure). He also described how he used data clustering techniques to group similar waveforms into distinct structural classes. From there, he could map waveforms with similar vertical structure to better understand the spatial distribution of the structural groups.
      Breakout Sessions—Session 1
      GEDI STMs offer a rare opportunity for members of the competed and mission STs, a variety of stakeholders, and other individuals to convene and discuss ideas and goals for their own research and for the GEDI mission. Toward that end, breakout sessions were held on the first and second day of the meeting – referred to as Session 1 and Session 2 in this report. The individual breakout meetings used a hybrid format allowing in-person and online participants to join the discussion that was most relevant to their interests and expertise.
      Chris Hakkenberg [Northern Arizona University (NAU)] led a breakout session on structural diversity, including the horizontal and vertical components. Different structural attributes, (e.g., stand structure, height, cover, and vegetation density) have different – but related – metrics and measurement approaches. Participants discussed biodiversity-structure relationships (BSRs), how to better characterize horizontal structural diversity, and how to define which metrics (i.e., scale, sampling unit, and spatial resolution) are most meaningful in different situations.
      Jim Kellner led a session that focused on biomass calibration and validation and how to create the best data products given global environmental variation. Special cases – e.g., mangroves – pose challenges for calibration and validation because they don’t always have as much plot-level data as other environments. Participants discussed how to determine strata while considering climactic and environmental covariates as well as constraints of data availability and consistency.
      Competed Science Team Presentations—Session 2
      The FORest Carbon Estimation (FORCE) Project is exploring the use of GEDI-derived canopy structure metrics to map forest biomass in the U.S. and Canada. Daniel Hayes [University of Maine] presented comparisons of GEDI metrics and canopy height models derived from airborne lidar and photo point clouds over different forest types and disturbance history in managed forests of Maine. Co-PI Andy Finley [Michigan State University] presented new work that adjusts GEDI L4B biomass estimates to plot data over the continental U.S. from Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture’s Forest Research and Development Branch. The project’s next steps are to fuse GEDI canopy structure metrics with other covariates in a spatial model to produce wall-to-wall estimates of biomass for boreal–temperate transition forests in northeast North America.
      GEDI data is also being used to study tropical forests. Chris Doughty [NAU] described how he and his team analyzed GEDI L2A data across all tropical forests and found that tropical forest structure was less stratified and more exposed to sunlight than previously thought. Most tropical forests (80% of the Amazon and 70% of southeast Asia and the Congo Basin) have a peak in the number of leaves at 15 m (49 ft) instead of at the canopy top. Doughty and his team have found that deviation from more ideal conditions (i.e., lower fertility or higher temperatures) lead to shorter, less-stratified tropical forests with lower biomass.
      Paul Moorcroft [Harvard University] reported on studies of current and future carbon dynamics across the Pacific Coast region based on forest structure and rates of carbon uptake. Moorcroft’s group examined how these ecosystems will behave in the future under different climate scenarios and have plans to conduct similar studies in other regions.
      DAY TWO
      Naikoa Aguilar-Amuchastegui [World Bank] kicked off day two with his perspective on the importance of streamlining the monitoring, reporting, and validation (MRV) process from scientific estimation to actual use of the data. Once scientific data is generated, end users are often faced with challenges related to transparency and understandability. Scientists can better communicate how to use their datasets properly, by familiarizing themselves with who wants to use their data, why they want to use it, and what their needs are. With this information in mind, data can be presented in more practical ways that allow for a variety of institutions with different standards and frameworks to integrate GEDI data more easily into their reporting. As the GEDI team continues to produce high-quality maps, efforts are underway to connect with end users and provide tutorials, workshops, and other resources.
      GEDI Demonstrative Products
      Demonstrative products show how GEDI data can be used in practice and in combination with other resources. Ecosystem modeling is one way that GEDI data are being used to address questions about aboveground carbon balance, future atmospheric CO2 concentrations, and habitat quality and biodiversity. George Hurtt [UMD—GEDI Co-I] shared his progress on integrating GEDI canopy height measurements with the Ecosystem Demography model to estimate current global forest carbon stocks and project future sequestration gaps under climate change – see Figure 6. Hurtt emphasized that this unprecedented volume of lidar data significantly enhances the ability of carbon models to capture spatial heterogeneity of forest carbon dynamics at 1 km (0.6 mi) scale, which is crucial for local policymaking regarding climate mitigation.
      Figure 6. [Top] Average lidar canopy height at 0.01° resolution, computed by gridding both GEDI and ICESat-2 together, and carbon stocks [middle] and fluxes [bottom] from ED-Lidar (GEDI and ICESat-2 combined). The insets highlight fine-scale spatial distribution and coverage gaps at selected regions (1.5° × 1.5°). Note that the three maps show grid-cell averages aggregated from sub-grid scale heterogeneity for each variable. Figure credit: From a 2023 article in Global Change Biology. There is also great potential for the development and application of methods for mapping forest structure, carbon stocks, and their changes by fusing data from GEDI and the Deutsches Zentrum für Luft- und Raumfahrt’s (DLR) [German Space Operations Center] TerraSAR-X Add-oN for Digital Elevation Measurement (TanDEM-X) satellite mission, which uses synthetic aperture radar (SAR) to gather three-dimensional (3D) images of Earth’s surface. This fusion product is being spearheaded by Wenlu Qi [UMD], who presented on efforts to create maps of pantropical canopy height, biomass, forest structure, and biomass change using the fusion product as well as maps of forests in temperate U.S. and Hawaii.
      Data from the GEDI mission are also being used to quantify the spatial and temporal distribution of habitat structure, which influences habitat quality and biodiversity. Scott Goetz [NAU—GEDI Deputy PI] presented on biodiversity-related activities, citing a 2023 paper in Nature that examined the effectiveness of protected areas (PAs) across southeast Asia using GEDI data to compare canopy structure within and outside of PAs – see Figure 7. He also presented an analysis of tree and plant diversity across U.S. National Ecological Observation Network (NEON) sites that showed similar capabilities of GEDI with airborne laser scanning (ALS) for tree diversity.
      Figure 7. [Top] Protected Areas (PAs) such as national parks can reduce habitat loss and degradation (from logging) and extractive behaviors such as hunting (shown in red circle), but this figure shows there are a wide range of real-world outcomes based on management effectiveness. [Middle] PAs are aimed at safeguarding multiple facets of biodiversity, including species richness (SR), functional richness (FR) and phylogenetic diversity (PD). PAs often focus on vertebrate conservation, owing to their threat levels and value to humans – including for tourism. This study focused on wildlife in southeast Asia, with mammals shown here representing a variation of feeding guilds and sizes. The same approach is repeated for birds. [Bottom] Wildlife communities inside PAs and in the surrounding landscape may exhibit distinct levels and types of diversity. Figure credit: From a 2023 article in Nature. Competed Science Team Presentations—Session 3
      One unique application of GEDI data is using lidar height to improve radiative transfer models for snow processes. Steven Hancock [University of Edinburgh, Scotland] reported on his group’s work studying snow, forest structure, and heterogeneity in forests, explaining that the majority of land surface models used for climate and weather forecasting use one-dimensional (1D) radiative transfer (RT) models driven by leaf area alone. Heterogeneous forests cast shadows and cause the surface albedo to depend upon sun angle and tree height for moderate leaf area indices (LAI), i.e., LAI values from  1-3 – which are common in snow-affected areas. This complexity cannot be represented in 1D models. An RT model can represent the effect of tree height and horizontal heterogeneity to simulate the observed change in albedo with height, which itself spatially varies.
      In contrast to a snowy study area, Ovidiu Csillik [NASA/Jet Propulsion Laboratory] and his team are developing statistical models to link GEDI relative height metrics to tropical forest characteristics traceable to inventory measurements. This dataset of forest structure variables over the Amazon will be used to initialize a demographic ecosystem model to produce projections of future potential tropical forest carbon, as demonstrated by Amazon-wide simulations using initializations from airborne lidar sampling.
      Wenge Ni-Meister [Hunter College of the City University of New York] is working on improving aboveground biomass estimates using GEDI waveform measurements. Ni-Meister and her team are testing models in both domestic and international tropical and temperate forests.
      Breakout Sessions—Session 2
      Two more breakout sessions occurred on day two:  
      Sean Healey led a discussion on modes of inference for GEDI data. Inference – formally derived uncertainty for area estimates of biomass, height, or other metrics – can take different forms, each of which includes specific assumptions. In this breakout session, participants considered the strengths and limitations of different inference types (e.g., intensity of computation or the ability to use different models).
      Laura Duncanson [UMD—GEDI Co-I] led a discussion about facilitation of open science, in other words, how to make GEDI data more accessible and digestible for data users. While GEDI data area free and publicly available via the LP DAAC and ORNL DAAC, gaining access to said data can be intimidating. Sharing more about existing resources and creating new ones can help remove barriers. The LP DAAC and ORNL DAAC have excellent tutorials on GitHub (a cloud-based software development platform that is primarily Python-based), and Google Earth Engine applications are available for accessing and visualizing GEDI data. Future endeavors may include more webinars, R-based tutorials, workshops, and trainings on specific topics and ways to use GEDI data. More information is available via an online compilation of GEDI-related tutorials.
      Perspective: A NUVIEW of Earth’s Land Surface
      For the second perspective presentation of day two, meeting attendees heard from Clint Graumann, CEO and co-founder of NUVIEW, a company whose mission is to build a commercial satellite constellation of lidar-imaging satellites that will produce 3D maps of the Earth’s entire land surface. Graumann shared NUVIEW’s intent to produce land surface maps on an annual basis and provide a variety of products and services, including digital surface models (DSMs), digital terrain models (DTMs), and a point cloud generated by laser pulses.
      Competed Science Team Presentations—Session 4
      Laura Duncanson began the second round of science presentations with her group’s research on global forest carbon hotspots. She discussed her 2023 paper in Nature Communications on the effectiveness of global PAs for climate change mitigation – see Figure 8, which found that the creation of PAs led to more biomass – especially in the Amazon. Within GEDI-domain terrestrial PAs, total aboveground biomass (AGB) storage was found to be 125 Pg, which is around 26% of global estimated AGB. Without the existence of PAs, 19.7 Gt of the 125 Pg would have likely been lost.
      Figure 8. PAs effectively preserve additional aboveground carbon (AGC) across continents and biomes, with forest biomes dominating the global signal, particularly in South America. The additional preserved AGC (Gt) in WWF biome classes (total Gt + /− SEM*area). World base map made with Natural Earth. The full set of analyzed GEDI data are represented in this figure (n = 412,100,767). Figure credit: From a 2023 article in Nature Communications. Another unique application of GEDI data has to do with water on the Earth’s surface. Kyungtae Lee [UMD], who works with Michelle Hofton [UMD—GEDI Co-I], reported that GEDI appears to capture the monthly annual cycle of lake elevation, showing good correlation with the ground-based observations. Lee explained that even though the GEDI lake elevation estimates show systematic biases relative to the local gauges, GEDI captures lake elevation dynamics well – especially the annual cycle variations. This work has the potential to expand knowledge of hydrological significance of lakes, particularly in data-limited areas of the world. Stephen Good [Oregon State University] presented a survey of his team’s recent work integrating observations from GEDI into hydrology and hydraulics studies of how vegetation can block and intercept moving water. The team found important nonlinear relationships between inferred canopy storage and canopy biomass and were able to estimate canopy water storage capacities and map these globally.
      Finally, Patrick Burns [NAU], who works with Scott Goetz, presented results using GEDI canopy structure metrics in mammal species distribution models across southeast Asia (specifically focusing on Borneo and Sumatra). The team’s early results indicate that GEDI canopy structure metrics are important in many mammal distribution models and improve model performance for another smaller subset of species. In other words, when looking at predictors like mean annual precipitation or forest structure (forest structure being a metric that GEDI data provide), the GEDI-derived structure metrics are more intuitive and help us understand distributional changes and fine-scale habitat suitability. In a region like southeast Asia, for example, which has undergone high rates of deforestation in the recent decades, forest structure may be a more relevant predictor in a species distribution model (SDM) than other metrics like climate or vegetation composition. The team will continue to produce models for additional species and expand the extent of the analysis to include mainland Asia.
      DAY THREE
      Competed Science Team Presentations—Session 5
      Day three began with the meeting’s last round of competed ST presentations. John Armston presented the progress of GEDI L2B Plant Area Volume Density (PAVD) product validation using a global Terrestrial Laser Scanning (TLS) database and fusion of the L2B product with Landsat time-series for quantifying change in canopy structure from the Australian wildfires of 2019–2020. Participants then heard from Jim Kellner on using machine-learning algorithms for L4A aboveground biomass density (AGBD). The performance of machine-learning algorithms on a testing data set was comparable to linear regressions used for the first releases of GEDI AGBD data products on average – although there were important geographical differences associated with machine learning. One application under investigation is using machine learning to identify new potential stratifications for GEDI footprint aboveground biomass density.
      Lastly, Jingyu Dai [New Mexico State University (NMSU)], who works with Niall Hanan [NMSU], presented on her analysis of the global limits to tree height. Her study shows that hydraulic limitation is the most important constraint on maximum canopy height globally. This result is mediated by plant functional type. In addition, rougher terrain promotes forest height at sub-landscape scales by enriching local niche diversity and probability of larger trees.
      Perspective from the Data Side
      As described in the summary of Ralph Dubayah’s introductory remarks, the LP DAAC and ORNL DAAC play essential roles in the dissemination of GEDI data and the success of the GEDI program. Representatives from each of these DAACs addressed the ST to summarize recent GEDI-related activities.
      Aaron Friesz [United States Geological Survey (USGS)] represented the LP DAAC and gave an update on the current archive size, distribution metrics, and outreach activities. He also discussed plans to support the growth and sustainability of the community through collaboration activities that will leverage the GitHub application; he described some of the resources that are available. Friesz then highlighted the USGS Eyes on Earth podcast and the Institute of Electrical and Electronics Engineers (IEEE) Geoscience and Remote Sensing Society (GRSS)’s Down to Earth podcast, which have featured Ralph Dubayah and Laura Duncanson, and shared plans to update the current GitHub tutorials and how-to guides in the Earthdata Cloud of GEDI V2 and V3.
      Rupesh Shrestha [ORNL] represented the ORNL DAAC and shared the status of GEDI L3, L4A, and L4B datasets archived there. He gave an overview of data tools and services for the GEDI datasets, which can be found on the GEDI website and GitHub tutorials website. GEDI L3, L4A, and L4B are available on NASA’s Earthdata Cloud and various enterprise-level services, such as NASA’s WorldView, Harmony, and OpenDAP. GEDI data usage metrics, data tutorials and workshops, and outreach activities, as well as other published community and related datasets were also highlighted. GEDI L3, L4A, and L4B have been downloaded over four million times collectively.
      Neha Hunka [UMD] gave the final presentation of the meeting on biomass harmonization activities. She reported that the GEDI estimates of aboveground biomass are capable of directly contributing to the United Nations Framework Convention on Climate Change Global Stocktake. Hunka and her colleagues’ research is aimed at bridging the science–policy gap to enable the use of space-based aboveground biomass estimates for policy reporting and impact – see Figure 9.
      Figure 9. Forest biomass estimates in the format of Intergovernmental Panel on Climate Change (IPCC) Tier 1 values from NASA GEDI and ESA Climate Change Initiative (CCI) maps. Figure credit: Neha Hunka Conclusion
      Overall, the 2023 GEDI STM showcased an exceptional array of scientific research that is highly relevant to addressing pressing global challenges and answering key questions about global forest structure, carbon balance, habitat quality, and biodiversity among other topics. As the GEDI instrument enters its second epoch, we are excited to welcome a new competed GEDI science team cohort and look forward to the release of V3 data products later this year.
      Ralph Dubayah concluded the STM with a summary of hibernation period goals and a farewell to this iteration of the competed ST. He extended a heartfelt thank you and farewell to Hank Margolis [NASA Headquarters, emeritus] who has been the NASA Program Scientist for the GEDI mission since 2015. Thank you, Hank. We will miss you.
      Talia Schwelling
      University of Maryland, College Park
      tschwell@umd.edu
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The WL 20 group of stars is located in the Rho Ophiuchi star-forming region, imaged here by NASA’s now-retired Spitzer Space Telescope. Located near the constellations Scorpius and Ophiuchus, the region is about 407 light-years from Earth. NASA/JPL-Caltech Managed by NASA’s Jet Propulsion Laboratory through launch, Webb’s Mid-Infrared Instrument also revealed jets of gas flowing into space from the twin stars.
      Scientists recently got a big surprise from NASA’s James Webb Space Telescope when they turned the observatory toward a group of young stars called WL 20. The region has been studied since the 1970s with at least five telescopes, but it took Webb’s unprecedented resolution and specialized instruments to reveal that what researchers long thought was one of the stars, WL 20S, is actually a pair that formed about 2 million to 4 million years ago.
      The discovery was made using Webb’s Mid-Infrared Instrument (MIRI) and was presented at the 244th meeting of the American Astronomical Society on June 12. MIRI also found that the twins have matching jets of gas streaming into space from their north and south poles.
      “Our jaws dropped,” said astronomer Mary Barsony, lead author of a new paper describing the results. “After studying this source for decades, we thought we knew it pretty well. But without MIRI we would not have known this was two stars or that these jets existed. That’s really astonishing. It’s like having brand new eyes.”
      This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. The team got another surprise when additional observations by the Atacama Large Millimeter/submillimeter Array (ALMA), a group of more than 60 radio antennas in Chile, revealed that disks of dust and gas encircle both stars. Based on the stars’ age, it’s possible that planets are forming in those disks.
      The combined results indicate that the twin stars are nearing the end of this early period of their lives, which means scientists will have the opportunity to learn more about how the stars transition from youth into adulthood.
      “The power of these two telescopes together is really incredible,” said Mike Ressler, project scientist for MIRI at NASA’s Jet Propulsion Laboratory and co-author of the new study. “If we hadn’t seen that these were two stars, the ALMA results might have just looked like a single disk with a gap in the middle. Instead, we have new data about two stars that are clearly at a critical point in their lives, when the processes that formed them are petering out.”
      This image of the WL 20 star group combines data from the Atacama Large Millimeter/submillimeter Array and the Mid-Infrared Instrument on NASA’s Webb telescope. Gas jets emanating from the poles of twin stars appear blue and green; disks of dust and gas surrounding the stars are pink.U.S. NSF; NSF NRAO; ALMA; NASA/JPL-Caltech; B. Saxton Stellar Jets
      WL 20 resides in a much larger, well-studied star-forming region of the Milky Way galaxy called Rho Ophiuchi, a massive cloud of gas and dust about 400 light-years from Earth. In fact, WL 20 is hidden behind thick clouds of gas and dust that block most of the visible light (wavelengths that the human eye can detect) from the stars there. Webb detects slightly longer wavelengths, called infrared, that can pass through those layers. MIRI detects the longest infrared wavelengths of any instrument on Webb and is thus well equipped for peering into obscured star-forming regions like WL 20.
      Radio waves can often penetrate dust as well, though they may not reveal the same features as infrared light. The disks of gas and dust surrounding the two stars in WL 20S emit light in a range that astronomers call submillimeter; these, too, penetrate the surrounding gas clouds and were observed by ALMA.
      These four images show the WL 20 star system as seen by (from left) NASA’s Infrared Telescope Facility at the Mauna Kea Observatory, the Hale 5.0-meter telescope the Palomar Observatory, the Keck II telescope, and the NASA’s Webb telescope and the Atacama Large Millimeter/submillimeter Array. But scientists could easily have interpreted those observations as evidence of a single disk with a gap in it had MIRI not also observed the two stellar jets. The jets of gas are composed of ions, or individual atoms with some electrons stripped away that radiate in mid-infrared wavelengths but not at submillimeter wavelengths. Only an infrared instrument with spatial and spectral resolution like MIRI’s could see them.
      ALMA can also observe clouds of leftover formation material around young stars. Composed of whole molecules, like carbon monoxide, these clouds of gas and dust radiate light at these longer wavelengths. The absence of those clouds in the ALMA observations shows that the stars are beyond their initial formation phase.
      “It’s amazing that this region still has so much to teach us about the life cycle of stars,” said Ressler. “I’m thrilled to see what else Webb will reveal.”
      More About the Mission
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      MIRI was developed through a 50-50 partnership between NASA and ESA. A division of Caltech in Pasadena, California, JPL led the U.S. efforts for MIRI, and a multinational consortium of European astronomical institutes contributes for ESA. George Rieke with the University of Arizona is the MIRI science team lead. Gillian Wright is the MIRI European principal investigator.
      The MIRI cryocooler development was led and managed by JPL, in collaboration with Northrop Grumman in Redondo Beach, California, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2024-085
      Share
      Details
      Last Updated Jun 13, 2024 Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Jet Propulsion Laboratory Stars Explore More
      5 min read NASA’s Perseverance Fords an Ancient River to Reach Science Target
      Article 3 hours ago 4 min read Coming in Hot — NASA’s Chandra Checks Habitability of Exoplanets
      Article 1 day ago 6 min read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      25 Min Read The Marshall Star for June 12, 2024
      Shining Stars: Marshall Teams Support Successful Crew Flight Test
      By Wayne Smith
      From preparing for flight readiness, to providing day-of-launch support, to delivering a critical piece of replacement hardware, NASA’s Marshall Space Flight Center played an integral role in the agency’s crew flight test to the International Space Station.
      The Starliner spacecraft – NASA’s Boeing crew flight test (CFT) powered by a United Launch Alliance (ULA) Atlas V rocket – successfully launched June 5 from Cape Canaveral Space Force Station. The flight test carried NASA astronauts Butch Wilmore and Suni Williams to the space station to test the spacecraft and its subsystems before NASA certifies the transportation system for rotational missions to the orbiting laboratory for the agency’s Commercial Crew Program.
      Marshall’s Commercial Crew Program (CCP) support team successfully completed the crew flight test (CFT) pre-flight test readiness review April 12. Supporting personnel, from left, are Deborah Crane, CCP launch vehicle (LV) chief engineer; Notlim Burgos, CCP LV Boeing lead engineer; Christopher Wakefield, POD Boeing CFT flight lead; Maggie Freeman, CCP LV program analyst; David Gwaltney, CCP interim launch vehicle deputy manager; Joseph Pelfrey, Marshall center director; Paul Crawford, safety and mission assurance; Jennifer Van Den Driessche, CCP LV Boeing certification manager; Kelli Maloney, CCP LV Boeing deputy lead engineer; Larry Leopard, Marshall associate director, technical; Megan Hines, safety and mission assurance; and Chris Chiesa, CCP spacecraft propulsion. NASA/Jason Waggoner The Boeing Starliner spacecraft successfully docked to the space station June 6. NASA and Boeing teams set a return date of no earlier than June 18 for the crew flight test. The additional time in orbit will allow the space station crews to perform a spacewalk June 13, while engineers complete Starliner systems checkouts. Coverage of the spacewalk begins at 5:30 a.m. on NASA TV.
      “It was incredible to witness yet another historic moment in this new era of space exploration,” said Marshall Director Joseph Pelfrey. “I am immensely proud of our Marshall team for providing the critical support needed to ensure this test flight is as safe as possible. This is just one example of how Marshall is utilizing our capabilities through strategic partnerships to expand space exploration for all humankind.”
      Launch Support
      Marshall’s role within the Commercial Crew Program, or CCP, is to support certification that the spacecraft and launch vehicle are ready for launch. The support team performs engineering expertise, particularly for propulsion, as well as program management, safety and mission assurance, and spacecraft support. These efforts ultimately lead up to day-of launch support from the Marshall’s Huntsville Operations Support Center (HOSC).
      Eighteen Marshall team members supported the launch from inside the HOSC. The team’s primary focus was ensuring the cryo-tanking of the liquid propellants and pressurants on the Centaur and the Atlas V booster went as planned. That included monitoring the replacement self-regulating vent valve (SRV), since the valve it replaced caused the launch scrub on the first attempt.
      Marshall’s CCP team members support the CFT launch from inside the Huntsville Operations Support Center on June 5. NASA/Nathaniel Stepp “The replacement SRV performed perfectly after liquid oxygen load into the Centaur tank,” said David Gwaltney, CCP interim Launch Vehicle Systems Office deputy manager. “The other team members ensured the pre-launch testing for the thrust vector control and the engine cooldown purges in preparation for launch were proceeding properly. Everyone was extremely happy when the launch successfully occurred on the third attempt.”
      Understandably, the HOSC is always a hive of activity on launch day, resulting in a sense of pride and accomplishment for the support team for their contributions toward successful NASA missions. However, the crew flight test of the Starliner was different.
      “Each and every Commercial Crew Program mission is special in its own way, especially as we continue to forge a new era of spaceflight while working with commercial partners,” said Maggie Freeman, a program analyst supporting the Launch Vehicle Systems Office within CCP at Marshall. “The crew flight test launch is particularly special to us because it is the first time we have crew aboard the Atlas V on a CCP mission. We were extremely excited to support launch and watch them safely board the International Space Station.”
      Critical Hardware Delivery
      Marshall also used the mission to deliver hardware to the space station – a replacement for the Urine Processor Pump Control Processor Assembly (PCPA). A malfunctioning pump necessitated an expedited delivery, NASA officials said June 7, requiring a cargo change for the mission. The PCPA converts the crew’s urine into drinkable water.
      Marshall’s CCP team members take time for a group photo from the HOSC following the Starliner launch. From left, Miranda Holton, Sangita Adhikari, Nathaniel Stepp, Lindsey Blair, Deborah Crane, Allen Henning, Spencer Mitchell, Alex Aueron, Preston Beatty, Megan Hines, Peter Jones, Melissa Neel, Brendan Graham, David Gwaltney, Peter Wreschinsky, Aaron Flinchum, Jonathan Carman, and Jimmy Moore.NASA/Nathaniel Stepp “This component is critical for space station operations and CFT was the first available mission providing an opportunity for the replacement to be delivered,” Freeman said.  “Due to the PCPA being a large piece of hardware, the ISS, Boeing, and CCP teams assessed the cargo swap requirements and exercised tremendous agility in performing a rapid turnaround to ensure that ISS operations would be maintained.”
      Pre-Flight Test Readiness Review
      The launch would not have happened without the certification efforts supported by the Marshall CCP team. The first Marshall Center Director CFT Pre-Flight Test Readiness Review was successfully completed in April. After the initial launch attempt May 6, the integrated Boeing, ULA, and CCP teams worked diligently to ensure crew safety remained the top priority. A second round of test readiness was scheduled, with the Marshall CCP team conducting a Marshall Center Director CFT delta pre-flight test readiness review in late May.
      For Starliner, the Marshall team’s primary focus was on the certification of the spacecraft’s thrusters, which are the propulsion systems used for translational and rotational control of the spacecraft while on-orbit. The thrusters are essential to mission success, ensuring the spacecraft can get from its initial insertion orbit to the space station and then back to Earth with precisely controlled burns.
      Boeing contracted with NASA to use the ULA Atlas V rocket to launch Starliner into orbit. Marshall’s Launch Vehicle Propulsion team evaluated the propulsion systems for the rocket to certify they were ready to launch astronauts to the space station.
      Marshall team members and NASA astronaut Josh Cassada developed a new procedure to get the Urine Process Assembly functional and returned to the space station on the CFT flight. This procedure validation was performed at Marshall on June 3-4. From left, Brian O’Connor, Curtis Fox, Steve Wilson, Anita Howard, Roy Price, Mike Gooch, Reggie McCafferty, JP Wilson, Camilla Duenas, Josh Cassada, Diana Marroguin, Harper Cox, Arthur Brown, Kai Yeaton, Jimmy Hill, Ben Craigmyle, and Denny Bartlett. Present but not pictured: Chris Brown, Dona Smith, Allen Hash, Shaun Glasgow, Jill Williamson, Josh Clifton, and Chad Berthelson. NASA JSC/Chris Brown “This includes following any build issues, evaluating any changes to the vehicles, and working with our partners to ensure that the launch vehicle is ready to fly,” said Miranda Holton, CCP Launch Vehicle Propulsion Systems manager.
      The HOSC provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Silver Snoopy Awards Presented to 17 Marshall Team Members
      By Jessica Barnett
      Seventeen team members at NASA’s Marshall Space Flight Center joined an elite group within the agency’s ranks June 11 as they accepted an award that’s granted to less than 1% of NASA’s workforce: the Silver Snoopy.
      An astronaut presents the award each year to NASA employees and contractors who have gone above and beyond in contributing to the human spaceflight program. It is a symbol of the intent and spirit of Space Flight Awareness and includes a sterling silver Snoopy lapel pin that has flown in space, along with a certificate of appreciation and a commendation letter for the employee, both signed by the astronaut.
      Recipients of the 2024 Silver Snoopy Awards at NASA’s Marshall Space Flight Center pose with their awards and NASA astronaut Kate Rubins, center, June 11 in Activities Building 4316. From left, front row, Mark Montgomery, Brian Saunders, Mignon Thame, Jessica Chaffin, Rubins, Stefanie Justice, Ellen Rabenberg, and Vince Vanek; back row, Manish Mehta, Bill Sadowski, Brad Addona, Christopher Buckley, Jonathan Burkholder, Joseph McCollister, Stacey Steele, Michael Fiske, Paul Gradl, and Trey Cate. NASA/Charles Beason “One of my favorite parts about my job is getting to share and celebrate the accomplishments of the best that NASA has to offer, and helping to give out the Silver Snoopy awards is just that opportunity,” said Larry Leopard, who serves as associate director, technical, at Marshall and joined NASA astronaut Kate Rubins to present the awards. “These employees embody the More to Marshall slogan – words that signify growth, ambition, and continuous improvement. They’re leaders in cultivating a mindset where every one of us is encouraged to think differently, act decisively, and innovate relentlessly.”
      “When we are doing highly dangerous activities, like getting on a rocket to the International Space Station or developing programs for Moon to Mars, we rely on everyone in NASA to support that end goal of exploration and safety,” Rubins said. “Our mission success is in their hands, and this is our way of saying thank you for everything they do.”
      NASA astronaut Kate Rubins speaks to attendees at Marshall’s 2024 Silver Snoopy Awards Ceremony held June 11 in Activities Building 4316.NASA/Charles Beason The following team members were honored during the ceremony in Activities Building 4316:
      Brad Addona, Engineering Directorate Christopher Buckley, Human Exploration Development and Operations Office Jonathan Burkholder, Engineering Directorate Trey Cate, Office of Strategic Analysis and Communications Jessica Chaffin, Engineering Directorate Michael Fiske, Jacobs/ESSCA, Science and Technology Office Paul Gradl, Engineering Directorate Stefanie Justice, Engineering Directorate Joseph McCollister, Space Launch System Program Manish Mehta, Engineering Directorate Mark Montgomery, Jacobs/ESSCA, Engineering Directorate Ellen Rabenberg, Engineering Directorate Bill Sadowski, Jacobs/ESSCA, Engineering Directorate Brian Saunders, L3Harris Stacey Steele, Human Exploration Development and Operations Office Mignon Thames, Human Landing System Program Vince Vanek, Office of the General Counsel The Silver Snoopy pins awarded flew on NASA’s SpaceX Cargo Resupply Mission-9. The Silver Snoopy award is one of eight awards presented annually by Space Flight Awareness. Additional information, including eligibility criteria, can be found here. 
      Barnett, a Media Fusion employee, supports the Marshall Office of Communications.
      › Back to Top
      Marshall Engineer Kurt Polzin Receives AIAA Honors Award
      By Daniel Boyette
      Advanced space nuclear propulsion systems are critical to NASA’s Moon to Mars vision. On May 15, one of the individuals at the forefront of those future exploration efforts was honored for his contributions.
      Kurt Polzin, chief engineer for the Space Nuclear Propulsion Office at NASA’s Marshall Space Flight Center, received the American Institute of Aeronautics and Astronautics (AIAA) Engineer of the Year award during its awards gala at the John F. Kennedy Center for Performing Arts in Washington.
      AIAA Executive Director Daniel Dumbacher, left, and AIAA President Laura McGill, right, present NASA Space Nuclear Propulsion Chief Engineer Kurt Polzin with the Engineer of the Year Award at the AIAA Awards Gala on May 15 at the John F. Kennedy Center for Performing Arts in Washington, D.C.Photo courtesy of AIAA “The use of nuclear technologies will become increasingly important as the nation returns humans to the Moon and then goes onward to Mars, and realizing these benefits will take not just a NASA effort, but a national effort,” Polzin told the audience. “It’s a privilege to work with and lead some of the best people in government, industry, and academia, bringing the nation closer to a future where nuclear power and propulsion technologies in space become common. What we do today will enable science missions and human exploration beyond anything humans have ever achieved for current and future generations of scientists and explorers.”
      Since 2021, Polzin has overseen NASA’s nuclear propulsion technology development and maturation efforts. He’s also the chief engineer for the agency’s partnership with the Defense Advanced Research Projects Agency (DARPA) on the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, which aims to demonstrate a nuclear thermal propulsion system in space as soon as 2027.
      “To live and work on the Moon, we’ll need a power and transportation infrastructure, and nuclear space systems offer key capability benefits over current state-of-art,” said Anthony Calomino, NASA’s Space Nuclear Technologies portfolio manager under the agency’s Space Technology Mission Directorate. “Kurt’s leadership in this journey to mature our space nuclear propulsion technology is what will get us there. We are proud to see him recognized as AIAA’s Engineer of the Year.”
      Q&A with Kurt Polzin
      Q: What were your emotions when you went to accept the award?
      Polzin: The list of those who have previously received this award is long and illustrious, so it is an honor to be nominated for it. Being selected by my peers as the recipient was a very thrilling and humbling experience. Receiving it at the Kennedy Center, in the presence of many aerospace leaders and my wife in the audience, made it a truly unique and memorable experience.
      Q: You’ve previously stated that individual awards are really team awards. How has being a member of a team helped you to be successful?
      Polzin: Realizing big ideas requires the contributions and expertise of many people across a range of skills and disciplines, and using nuclear technologies in space is about the most significant idea there is. The team we assembled and continue to grow consists of true experts in their disciplines. I constantly rely on them to ensure we are asking the right questions and making investments to advance our capabilities and position the nation for success. 
      Polzin delivers his acceptance speech.Photo courtesy of AIAA Q: What excites you most about the future of space exploration?
      Polzin: In my lifetime, we have never been closer to fully realizing the benefits of nuclear power and propulsion in space. We now have the potential to cross the threshold and open a new era where nuclear technologies will bring about truly transformational change in how we approach all aspects of space exploration.
      Before his current role, Polzin was the Space Systems Team lead in Marshall’s Advanced Concepts Office. He joined NASA in 2004 as a propulsion research engineer.
      Polzin has a doctorate and a master’s in Mechanical and Aerospace Engineering from Princeton University in New Jersey and a bachelor’s in Aeronautical and Astronautical Engineering from Ohio State University in Columbus.
      He authored or co-authored over 140 publications, including a recently published monograph, and he holds six U.S. patents. He has also been an adjunct professor at the University of Alabama in Huntsville for many years, teaching graduate-level courses in physics and engineering.
      Polzin’s other honors include the AIAA Sustained Service Award, the AIAA Greater Huntsville Section’s Martin Schilling Outstanding Service and Earl Pearce Professional of the Year, and multiple NASA Patent, Special Service, and Group Achievement awards. He is an associate fellow of AIAA and a senior member of the Institute of Electrical and Electronics Engineers.
      NASA’s Space Technology Mission Directorate funds the SNP Office.
      With nearly 30,000 individual members from 91 countries and 95 corporate members, AIAA is the world’s largest technical society dedicated to the global aerospace profession.
      Learn more about Space Nuclear Propulsion.
      Boyette, a Media Fusion employee, supports the Space Nuclear Propulsion Office and Marshall’s Office of Strategic Analysis & Communications.
      › Back to Top
      NASA Announces Student Launch Winners
      NASA presented the 2024 Student Launch challenge award winners in a virtual award ceremony June 7. Awards were presented to students from colleges, universities, high schools, middle schools, and informal education groups who designed, built, and launched high-powered, amateur rockets and scientific payloads. In addition to the overall winners, other awards were presented for safety, vehicle design, social media presence, STEM engagement, and more. The Student Launch challenge was held May 3 in Toney, Alabama, near the agency’s Marshall Space Flight Center. Read more about Student Launch.
      › Back to Top
      Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA
      By Savannah Bullard
      NASA’s Deep Space Food Challenge kicks off its final eight-week demonstration this month, and a new crew is running the show. 
      NASA’s partner for the Deep Space Food Challenge, the Methuselah Foundation, has teamed up with Ohio State University in Columbus to facilitate the challenge’s third and final phase. The university is employing current and former students to serve on a “Simunaut” crew to maintain and operate the food production technologies during the demonstration period.  
      Ohio State University has hired four student “Simunauts” (simulated analog astronauts) to test NASA’s Deep Space Food Challenge technologies at the Wilbur A. Gould Food Industries Center’s Food Processing Pilot Plant this summer. From left, Charlie Frick, Fuanyi Fobellah, Sakura Sugiyama, and Mehr Un Nisa.Ohio State University The Deep Space Food Challenge creates novel food production systems that offer safe, nutritious, and delicious food for long-duration human exploration missions while conscious of waste, resources, and labor. The challenge could also benefit humanity by helping address Earth’s food scarcity problems. In this challenge phase, NASA will offer a $1.5 million prize purse to winning U.S. teams after demonstrations are completed during an awards ceremony on August 16. 
      “It’s easy for a team with intimate knowledge of their food systems to operate them. This will not be the case for astronauts who potentially use these solutions on deep-space missions,” said Angela Herblet, Program Analyst for NASA’s Centennial Challenges and Challenge Manager for the Deep Space Food Challenge. “Incorporating the Simunauts will add a unique flair that will test the acceptability and ease of use of these systems.” 
      The demonstrations will occur inside Ohio State’s Wilbur A. Gould Food Industries Center’s Food Processing Pilot Plant until July 31. Meet the students behind the demonstrations: 
      Fuanyi Fobellah
      Fuanyi Fobellah was a picky eater as a child. But, when he began wrestling in school, food became an essential part of his life. Now a senior majoring in food business management at Ohio State, Fobellah combines his love for space exploration with his food, nutrition, business, and innovation knowledge.
      Q: How does the work you’re doing this summer fit into the overall NASA mission, and how do your contributions fit into that mission?
      A: Food can easily become an overlooked aspect of space travel, but humans can only live and travel to different planets with sustainable food systems. That’s why a challenge focused on developing food systems for space travel is so vital to NASA’s mission.
      Sakura Sugiyama
      Sakura Sugiyama’s childhood hobbies were cooking and baking, and with two scientists as parents, the Deep Space Food Challenge piqued the interest of the recent Ohio State graduate. Sugiyama obtained her bachelor’s degree from Ohio State’s Department of Food Science and Technology and plans to work in research and development in the food industry. 
      Q: Why do you think this work is important for the future of civilization? 
      A: Food variety, sustainability, energy efficiency – all of those are issues we face here on Earth due to climate change, increasing populations, and food insecurity. I hope that solving those issues in space will also help solve those problems on Earth.
      Charlie Frick
      A fifth-year student studying animal sciences, Charlie Frick, found his passion while growing up on his family’s farm. While finishing his degree, he hopes the Deep Space Food Challenge will allow him to use his agriculture and animal science knowledge to support space technology, nutrition, and food regeneration.
      Q: Now that you’re familiar with NASA’s public prize competitions, how do you think they benefit the future of human space exploration? 
      A: These challenges help a lot because sometimes you need that third person who doesn’t have that background but can come up with something to help. These challenges are critical in helping bring about technologies that otherwise would never exist.
      Mehir Un Nisa
      Mehir Un Nisa is a graduate student in Ohio State’s Department of Food Science and Technology. As a kid who dreamed about working at NASA, Un Nisa is using her expertise in food science to make that dream a reality and get a foot in the door of the agency’s food and nutrition programs. 
      Q: How does it feel to work alongside NASA on a project like this? 
      A: Working with NASA empowers me as a researcher, and it makes me feel good that food science has a part in that big name. It’s a dream come true for me. 
      The Deep Space Food Challenge, a NASA Centennial Challenge, is a coordinated effort between NASA and CSA (Canadian Space Agency). Subject matter experts at Johnson Space Center and Kennedy Space Center support the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at Marshall Space Flight Center. The Methuselah Foundation, in partnership with NASA, oversees the United States and international competitors.
      Learn more about the Deep Space Food Challenge. 
      Bullard, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      NASA, Global Astronomers Await Rare Nova Explosion
      By Rick Smith
      Around the world this summer, professional and amateur astronomers alike will be fixed on one small constellation deep in the night sky. But it’s not the seven stars of Corona Borealis, the “Northern Crown,” that have sparked such fascination.
      It’s a dark spot among them where an impending nova event – so bright it will be visible on Earth with the naked eye – is poised to occur.
      A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.NASA “It’s a once-in-a-lifetime event that will create a lot of new astronomers out there, giving young people a cosmic event they can observe for themselves, ask their own questions, and collect their own data,” said Dr. Rebekah Hounsell, an assistant research scientist specializing in nova events at NASA’s Goddard Space Flight Center. “It’ll fuel the next generation of scientists.”
      T Coronae Borealis, dubbed the “Blaze Star” and known to astronomers simply as “T CrB,” is a binary system nestled in the Northern Crown some 3,000 light-years from Earth. The system is comprised of a white dwarf – an Earth-sized remnant of a dead star with a mass comparable to that of our Sun – and an ancient red giant slowly being stripped of hydrogen by the relentless gravitational pull of its hungry neighbor.
      The hydrogen from the red giant accretes on the surface of the white dwarf, causing a buildup of pressure and heat. Eventually, it triggers a thermonuclear explosion big enough to blast away that accreted material. For T CrB, that event appears to reoccur, on average, every 80 years.
      Don’t confuse a nova with a supernova, a final, titanic explosion that destroys some dying stars, Hounsell said. In a nova event, the dwarf star remains intact, sending the accumulated material hurtling into space in a blinding flash. The cycle typically repeats itself over time, a process which can carry on for tens or hundreds of thousands of years.
      “There are a few recurrent novae with very short cycles, but typically, we don’t often see a repeated outburst in a human lifetime, and rarely one so relatively close to our own system,” Hounsell said. “It’s incredibly exciting to have this front-row seat.”
      The first recorded sighting of the T CrB nova was more than 800 years ago, in autumn 1217, when a man named Burchard, abbot of Ursberg, Germany, noted his observance of “a faint star that for a time shone with great light.”
      The T CrB nova was last seen from Earth in 1946. Its behavior over the past decade appears strikingly similar to observed behavior in a similar timeframe leading up to the 1946 eruption. If the pattern continues, some researchers say, the nova event could occur by September 2024.
      What should stargazers look for? The Northern Crown is a horseshoe-shaped curve of stars west of the Hercules constellation, ideally spotted on clear nights. It can be identified by locating the two brightest stars in the Northern Hemisphere – Arcturus and Vega – and tracking a straight line from one to the other, which will lead skywatchers to Hercules and the Corona Borealis.
      A conceptual image of how to find Hercules and the “Northern Crown” in the night sky, created using planetarium software. Look up after sunset during summer months to find Hercules, then scan between Vega and Arcturus, where the distinct pattern of Corona Borealis may be identified.NASA The outburst will be brief. Once it erupts, it will be visible to the naked eye for a little less than a week – but Hounsell is confident it will be quite a sight to see.
      Dr. Elizabeth Hays, chief of Goddard’s Astroparticle Physics Laboratory, agreed. She said part of the fun in preparing to observe the event is seeing the enthusiasm among amateur stargazers, whose passion for extreme space phenomena has helped sustain a long and mutually rewarding partnership with NASA.
      “Citizen scientists and space enthusiasts are always looking for those strong, bright signals that identify nova events and other phenomena,” Hays said. “Using social media and email, they’ll send out instant alerts, and the flag goes up. We’re counting on that global community interaction again with T CrB.”
      Hays is the project scientist for NASA’s Fermi Gamma-ray Space Telescope, which has made gamma-ray observations from low Earth orbit since 2008. Fermi is poised to observe T CrB when the nova eruption is detected, along with other space-based missions including NASA’s James Webb Space Telescope, Neil Gehrels Swift Observatory, IXPE (Imaging X-ray Polarimetry Explorer), NuSTAR (Nuclear Spectroscopic Telescope Array), NICER (Neutron star Interior Composition Explorer), and the European Space Agency’s INTEGRAL (Extreme Universe Surveyor). Numerous ground-based radio telescopes and optical imagers, including the National Radio Astronomy Observatory’s Very Large Array in Mexico, also will take part. Collectively, the various telescopes and instruments will capture data across the visible and non-visible light spectrum.
      “We’ll observe the nova event at its peak and through its decline, as the visible energy of the outburst fades,” Hounsell said. “But it’s equally critical to obtain data during the early rise to eruption – so the data collected by those avid citizen scientists on the lookout now for the nova will contribute dramatically to our findings.”
      For astrophysics researchers, that promises a rare opportunity to shed new light on the structure and dynamics of recurring stellar explosions like this one.
      “Typically, nova events are so faint and far away that it’s hard to clearly identify where the erupting energy is concentrated,” Hays said. “This one will be really close, with a lot of eyes on it, studying the various wavelengths and hopefully giving us data to start unlocking the structure and specific processes involved. We can’t wait to get the full picture of what’s going on.”
      Some of those eyes will be very new. Gamma-ray imagers didn’t exist the last time T CrB erupted in 1946, and IXPE’s polarization capability – which identifies the organization and alignment of electromagnetic waves to determine the structure and internal processes of high-energy phenomena – is also a brand-new tool in X-ray astronomy. Combining their data could offer unprecedented insight into the lifecycles of binary systems and the waning but powerful stellar processes that fuel them.
      Learn more about NASA astrophysics.
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      ‘Super’ Star Cluster Shines in New Look from NASA’s Chandra
      Westerlund 1 is the biggest and closest “super” star cluster to Earth. New data from NASA’s Chandra X-ray Observatory, in combination with other NASA telescopes, is helping astronomers delve deeper into this galactic factory where stars are vigorously being produced.
      This is the first data to be publicly released from a project called the Extended Westerlund 1 and 2 Open Clusters Survey, or EWOCS, led by astronomers from the Italian National Institute of Astrophysics in Palermo. As part of EWOCS, Chandra observed Westerlund 1 for about 12 days in total.
      An image of the Westerlund 1 star cluster and the surrounding region, as detected in X-ray and optical light. The black canvas of space is peppered with colored dots of light of various sizes, mostly in shades of red, green, blue, and white.X-ray: NASA/CXC/INAF/M. Guarcello et al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare Currently, only a handful of stars form in our galaxy each year, but in the past the situation was different. The Milky Way used to produce many more stars, likely hitting its peak of churning out dozens or hundreds of stars per year about 10 billion years ago and then gradually declining ever since. Astronomers think that most of this star formation took place in massive clusters of stars, known as “super star clusters,” like Westerlund 1. These are young clusters of stars that contain more than 10,000 times the mass of the Sun. Westerlund 1 is between about 3 million and 5 million years old.
      This new image shows the new deep Chandra data along with previously released data from NASA’s Hubble Space Telescope. The X-rays detected by Chandra show young stars (mostly represented as white and pink) as well as diffuse heated gas throughout the cluster (colored pink, green, and blue, in order of increasing temperatures for the gas). Many of the stars picked up by Hubble appear as yellow and blue dots.
      Only a few super star clusters still exist in our galaxy, but they offer important clues about this earlier era when most of our galaxy’s stars formed. Westerlund 1 is the biggest of these remaining super star clusters in the Milky Way and contains a mass between 50,000 and 100,000 Suns. It is also the closest super star cluster to Earth at about 13,000 light-years.
      These qualities make Westerlund 1 an excellent target for studying the impact of a super star cluster’s environment on the formation process of stars and planets as well as the evolution of stars over a broad range of masses.
      This new deep Chandra dataset of Westerlund 1 has more than tripled the number of X-ray sources known in the cluster. Before the EWOCS project, Chandra had detected 1,721 sources in Westerlund 1. The EWOCS data found almost 6,000 X-ray sources, including fainter stars with lower masses than the Sun. This gives astronomers a new population to study.
      One revelation is that 1,075 stars detected by Chandra are squeezed into the middle of Westerlund 1 within four light-years of the cluster’s center. For a sense of how crowded this is, four light-years is about the distance between the Sun and the next closest star to Earth.
      The diffuse emission seen in the EWOCS data represents the first detection of a halo of hot gas surrounding the center of Westerlund 1, which astronomers think will be crucial in assessing the cluster’s formation and evolution, and giving a more precise estimate of its mass.
      A paper published in the journal Astronomy and Astrophysics, led by Mario Guarcello from the Italian National Institute of Astrophysics in Palermo, discusses the survey and the first results. Follow-up papers will discuss more about the results, including detailed studies of the brightest X-ray sources. This future work will analyze other EWOCS observations, involving NASA’s James Webb Space Telescope and NICER (Neutron Star Interior Composition Explorer).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      › Back to Top
      NASA Awards Contract for Safety and Mission Assurance Services
      NASA has selected KBR Wyle Services LLC, of Fulton, Maryland, to provide safety and mission assurance services to the agency.
      The Safety and Mission Assurance, Audits, Assessments, and Analysis (SA3) Services contract is a cost-plus-fixed-fee contract with an indefinite-delivery/indefinite-quantity provision and a maximum potential value of approximately $75.3 million. The three-year base performance period of this contract begins August 1, 2024, and is followed by a two-year option, which would end July 31, 2029.
      The SA3 contract will provide safety and mission assurance services to NASA Headquarters and other NASA centers, programs, projects, and activities through the NASA Safety Center. These services include, but aren’t limited to, audit/assessment/analysis support, safety assessments and hazard analysis, reliability and maintainability analysis, risk analysis and management, supply chain data management and analytics, software safety and assurance, training and outreach, quality engineering and assurance, and information systems support.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...