Jump to content

55 Years Ago: Seven Months Before the Moon Landing


NASA

Recommended Posts

  • Publishers

December 1968 ended a year more turbulent than most. For the American space program, however, it brought the Moon landing one giant step closer. The successful first lunar orbital flight by Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders proved the space worthiness of the Apollo Command and Service Modules (CSM) at lunar distances and demonstrated navigation beyond low Earth orbit. Preparations continued for the next two missions – Apollo 9 to test the Lunar Module (LM) in Earth orbit in February or March 1969, and Apollo 10 to repeat the test in lunar orbit in May. If those missions proved successful, NASA hoped to achieve the first Moon landing by the summer of 1969.

Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders during the preflight crew press conference At the White House, Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra, Apollo 8 astronauts Anders, Lovell, and Borman, standing at right, watch aviation pioneer Charles A. Lindberg sign a commemorative document, as First Lady “Lady Bird” Johnson, President Lyndon B. Johnson, former NASA Administrator James E. Webb, and Vice President Hubert H. Humphrey look on During the countdown demonstration test, Borman, standing left, Lovell, and Anders pose with their backups Neil A. Armstrong, kneeling left, Edwin E. “Buzz” Aldrin, and Fred W. Haise
Left: Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders during the preflight crew press conference. Middle: At the White House, Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra, Apollo 8 astronauts Anders, Lovell, and Borman, standing at right, watch aviation pioneer Charles A. Lindberg sign a commemorative document, as First Lady “Lady Bird” Johnson, President Lyndon B. Johnson, former NASA Administrator James E. Webb, and Vice President Hubert H. Humphrey look on. Right: During the countdown demonstration test, Borman, standing left, Lovell, and Anders pose with their backups Neil A. Armstrong, kneeling left, Edwin E. “Buzz” Aldrin, and Fred W. Haise.

On Dec. 2, Borman, Lovell, and Anders held their preflight press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Borman summed up the crew’s readiness, “I think we can say we’re ready two weeks before” the flight. President Lyndon B. Johnson invited Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham to a state dinner at the White House on Dec. 9, 1968. He also invited Apollo 8 astronauts Borman, Lovell, and Anders, just 12 days from their historic launch to the Moon, as well as aviation pioneer Charles A. Lindberg to sign a commemorative document to hang in the White House Treaty Room. Two days later, Borman, Lovell, and Anders and their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise participated in the countdown demonstration test at NASA’s Kennedy Space Center (KSC) in Florida.

The Apollo 8 launch vehicle at Launch Pad 39A during the countdown demonstration test Apollo 8 crew of William A. Anders, left, Frank Borman, and James A. Lovell at the Command Module simulator at NASA’s Kennedy Space Center in Florida Lovell, left, Borman, and Anders enjoy some pre-holiday cheer on the eve of their launch to the Moon
Left: The Apollo 8 launch vehicle at Launch Pad 39A during the countdown demonstration test. Middle: Apollo 8 crew of William A. Anders, left, Frank Borman, and James A. Lovell at the Command Module simulator at NASA’s Kennedy Space Center in Florida. Right: Lovell, left, Borman, and Anders enjoy some pre-holiday cheer on the eve of their launch to the Moon.

Engineers at KSC’s Launch Complex 39 completed the Apollo 8 Countdown Demonstration Test (CDDT) between Dec. 5 and 11, consisting of “wet” and “dry” phases. In the first wet phase, they simulated the entire countdown including the loading of propellant in the rocket’s three stages, down to T minus 8.9 seconds, the time when the first stage’s five F-1 engines ignite. For safety reasons, the crew did not participate in the wet countdown. At the end of the wet phase on Dec. 10, workers drained the fuel from the rocket and recycled the countdown. The next day, the countdown again proceeded to the point of first stage ignition, but for this dry phase the astronauts suited up and strapped into the capsule as they would on launch day. The CDDT also tied in the Mission Control Center (MCC) at MSC, and the Manned Space Flight Network, a series of tracking stations around the world used to monitor the mission. With the CDDT completed, the countdown for Apollo 8 began on Dec. 15.

Liftoff of Apollo 8 A rapidly receding Earth shortly after Trans-Lunar Injection The spent S-IVB third stage with the Lunar Module (LM) Test Article-B (LTA-B) visible where a LM would normally reside
Left: Liftoff of Apollo 8. Middle: A rapidly receding Earth shortly after Trans-Lunar Injection. Right: The spent S-IVB third stage with the Lunar Module (LM) Test Article-B (LTA-B) visible where a LM would normally reside.

On Dec. 21, 1968, at precisely 7:51 a.m. EST, at Launch Pad 39A the five engines of the Saturn V’s first stage came to life, powering up to their full 7.5 million pounds of thrust. The brilliance of the flame rivaled the sunrise. At the top of the rocket, strapped inside their Command Module (CM), Borman, Lovell, and Anders experienced firsthand the power of a Saturn V launch. As soon as the rocket cleared the launch tower, control of the mission transferred from the Launch Control Center at Launch Complex 39 to MCC at MSC. From there, three teams of controllers, led by Lead Flight Director Clifford E. Charlesworth and Flight Directors Glynn S. Lunney and Milton L. Windler, working in eight-hour shifts, monitored the mission until splashdown. During the launch and early phases of the flight, Michael Collins served as the capsule communicator, or capcom, the astronaut in MCC who spoke directly with the crew. Within 11 and a half minutes, the three stages of the Saturn V placed Apollo 8 into Earth orbit. For the next 90 minutes, MCC and the astronauts thoroughly checked out the spacecraft’s systems, and capcom Collins informed the crew, “You are go for TLI,” or Trans-Lunar Injection, a less than dramatic way of saying “You’re off to the Moon!” Those words committed the mission to break the bonds of Earth’s gravity and set a course for the Moon. Near the end of the second revolution around the Earth, the rocket’s third stage engine fired for a second time, for more than five minutes, increasing Apollo 8’s speed from 17,400 miles per hour to 24,226 miles per hour, enough to overcome Earth’s gravity and send it on a Moonward trajectory. Soon after the burn ended, the astronauts separated their spacecraft from the spent stage and began their three-day cruise to the Moon.

The famous Earthrise photograph from Apollo 8
The famous Earthrise photograph from Apollo 8.

During the journey, Borman, Lovell, and Anders passed through the Earth’s Van Allen radiation belts and crossed into the Moon’s gravitational sphere of influence. About 69 hours after launch, Apollo 8 passed the leading edge of the Moon and disappeared behind it, all communications with Earth cut off. While behind the Moon, the astronauts performed the Lunar Orbit Insertion maneuver, but for a few anxious minutes, only they knew that their spacecraft’s engine had performed as expected. As they emerged on the Moon’s other side precisely at the predicted time, MCC confirmed that Apollo 8 had achieved lunar orbit. The astronauts began to describe the Moon as no other humans had seen it before.

The Tsiolkovski Crater on the Moon’s farside, seen directly by human eyes for the first time during Apollo 8 Apollo 8 shortly after splashdown, with the astronauts in the life raft awaiting pick up by the recovery helicopter Apollo 8 astronauts arrive on the prime recovery ship U.S.S. Yorktown
Left: The Tsiolkovski Crater on the Moon’s farside, seen directly by human eyes for the first time during Apollo 8. Middle: Apollo 8 shortly after splashdown, with the astronauts in the life raft awaiting pick up by the recovery helicopter. Right: Apollo 8 astronauts arrive on the prime recovery ship U.S.S. Yorktown.

For the next 20 hours, they orbited the Moon 10 times. On their ninth revolution, knowing that Christmas Eve had turned to Christmas Day, Borman, Lovell, and Anders read from The Bible’s Book of Genesis and wished everyone on “the good Earth” a Merry Christmas. On their final revolution, they disappeared behind the Moon one last time and fired their spacecraft’s engine to propel them out of lunar orbit to head back toward Earth. Once they reestablished contact at the predicted time, Lovell proclaimed, “Please be informed there is a Santa Claus,” his way of saying that the engine burned as expected. The astronauts spent the next three days coasting back toward Earth, ending their historic six-day mission with a predawn splashdown in the Pacific Ocean. Teams from the prime recovery ship U.S.S. Yorktown (CV-10) recovered them from the water and brought them aboard the carrier.

Apollo 8 astronauts (wearing leis) William A. Anders, left, James A. Lovell, and Frank Borman listen to Hawaii Governor John A. Burns during their brief stopover at Hickam Air Force Base (AFB) in Honolulu Anders, left, Borman, and Lovell give short speeches to the crowd gathered to welcome them home at Ellington AFB in Houston The Apollo 8 Command Module on display at the Museum of Science and Industry in Chicago
Left: Apollo 8 astronauts (wearing leis) William A. Anders, left, James A. Lovell, and Frank Borman listen to Hawaii Governor John A. Burns during their brief stopover at Hickam Air Force Base (AFB) in Honolulu. Middle: Anders, left, Borman, and Lovell give short speeches to the crowd gathered to welcome them home at Ellington AFB in Houston. Right: The Apollo 8 Command Module on display at the Museum of Science and Industry in Chicago. Image credit: courtesy Museum of Science and Industry.

From the Yorktown, Borman, Lovell, and Anders flew to Hickam Air Force Base (AFB) in Honolulu. Following a brief welcome ceremony hosted by Hawaii Governor John A. Burns, their boarded a transport jet bound for Texas. Upon their arrival back in Houston on Dec. 29, more than 2,000 people greeted them at Ellington AFB despite the pre-dawn chill. Meanwhile, after the Yorktown arrived in Honolulu on Dec. 29, workers removed the CM to begin safing its systems. They flew it to Long Beach, California, and from there trucked it to its manufacturer, the North American Rockwell Space Division in Downey, California, where it arrived on Jan. 1, 1969, for a thorough postflight inspection. Since 1971, the Apollo 8 CM has been on display at the Museum of Science and Industry in Chicago. TIME magazine named Borman, Lovell, and Anders Men of the Year for 1968. Apollo 8 brought the Moon landing one giant step closer.

Apollo 9 astronauts James A. McDivitt, left, David R. Scott, and Russell L. Schweickart pose in front of the Apollo 8 Saturn V during its terminal countdown demonstration test at Launch Pad 39A at NASA’s Kennedy Space Center in Florida
Apollo 9 astronauts James A. McDivitt, left, David R. Scott, and Russell L. Schweickart pose in front of the Apollo 8 Saturn V during its terminal countdown demonstration test at Launch Pad 39A at NASA’s Kennedy Space Center in Florida.

Due to delays in its development, the LM remained one component of the lunar mission architecture that Apollo 8 did not test. The task of conducting the first crewed evaluation of the LM fell to Apollo 9, scheduled for late February 1969. As the prime crew for the 10-day Earth orbital mission, NASA assigned James A. McDivitt, David R. Scott, and Russell L. Schweickart, with Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean as their backups. McDivitt and Schweickart planned to enter the LM while Scott remained in the CM. Before the two spacecraft undocked, Schweickart planned to conduct a roughly 2-hour spacewalk, using prepositioned handholds to translate from the LM to the CM, where Scott awaited him in the open hatch. The dual spacewalk served to demonstrate a backup transfer capability should a problem arise with the internal transfer tunnel. The spacewalk would also serve as the only in-space test of the new Apollo A7L spacesuit before the Moon landing. Following the spacewalk, McDivitt and Schweickart planned to undock the LM and conduct an independent flight up to a distance of 100 miles, and test both the descent and ascent stage engines, before rejoining Scott in the CM.

Apollo 9 prime and backup astronauts test the new Apollo A7L spacesuit in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. David R. Scott Apollo 9 prime and backup astronauts test the new Apollo A7L spacesuit in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Russell L. Schweickart Apollo 9 prime and backup astronauts test the new Apollo A7L spacesuit in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Alan L. Bean
Apollo 9 prime and backup astronauts test the new Apollo A7L spacesuit in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. David R. Scott, left, Russell L. Schweickart, and Alan L. Bean.

International Latex Corporation (ILC) of Dover, Delaware, developed two versions of the Apollo A7L space suit for NASA – one for use exclusively inside the spacecraft, such as during launch, and the other that astronauts can also use during spacewalks, using the Portable Life Support System (PLSS) backpack. Both types of the suit could operate under vacuum conditions, but crew members wearing the inside version remained attached to the spacecraft via hoses that provided life support such as oxygen. The external version’s PLSS provided the required oxygen and communications during spacewalks outside the vehicle, for example on the lunar surface. For Apollo 9, McDivitt and Schweickart wore the external versions (even though McDivitt did not plan to do a spacewalk) while Scott wore the internal version. McDivitt, Scott, Schweickart, and Bean tested their A7L spacesuits with the PLSS under vacuum conditions in Chamber A of the Space Environment Simulation Laboratory at MSC.

The assembled Apollo 9 spacecraft arrives from the Manned Spacecraft Operations Building, and shares space in the transfer aisle with the recently arrived Apollo 10 first stage Workers hoist the Apollo 9 spacecraft in preparation for stacking onto the Saturn V rocket, with the Lunar Module’s landing gear visible Workers stack the Apollo 9 spacecraft onto its Saturn V rocket
In the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Left: The assembled Apollo 9 spacecraft arrives from the Manned Spacecraft Operations Building, and shares space in the transfer aisle with the recently arrived Apollo 10 first stage. Middle: Workers hoist the Apollo 9 spacecraft in preparation for stacking onto the Saturn V rocket, with the Lunar Module’s landing gear visible. Right: Workers stack the Apollo 9 spacecraft onto its Saturn V rocket.

On Nov. 30, workers in KSC’s Manned Spacecraft Operations Building (MSOB) installed the Apollo 9 LM in its Spacecraft LM Adapter (SLA) and then stacked the CSM on top. They transferred the assembled spacecraft to the Vehicle Assembly Building (VAB) three days later where engineers stacked it atop its Saturn V rocket in High Bay 3. Rollout to Launch Pad 39A occurred in early January 1969. 

Workers ready the Apollo 10 S-IC first stage for stacking onto the Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida Workers stack the Apollo 10 S-II second stage The S-IVB third stage for Apollo 10 arrives at KSC
Left: Workers ready the Apollo 10 S-IC first stage for stacking onto the Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers stack the Apollo 10 S-II second stage. Right: The S-IVB third stage for Apollo 10 arrives at KSC.

Preparations continued for Apollo 10, the mission planned for May 1969 to test all the spacecraft components in lunar orbit as a possible dress rehearsal for the Moon landing. The Apollo 10 prime crew consisted of Thomas P. Stafford, John W. Young, and Eugene A. Cernan, the first all-veteran three-person crew, with L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell assigned as their backups. Stafford and Cernan planned to undock their LM and fly it to within nine miles of the lunar surface before rejoining Young in the CM. At KSC, in the VAB’s High Bay 2, by Dec. 7 workers had stacked the first two stages of the Apollo 10 Saturn V. The third stage arrived at KSC on Dec. 10 and workers stacked it atop the rocket on Dec. 29.

Simulated docking test between the Apollo 10 Lunar Module (LM), top, and Command Module Simulated docking test between the Apollo 10 Lunar Module (LM), top, and Command Module Joining the LM’s ascent stage to the descent stage
Apollo 9 spacecraft testing in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida. Left and middle: Simulated docking test between the Apollo 10 Lunar Module (LM), top, and Command Module. Right: Joining the LM’s ascent stage to the descent stage.

In the nearby MSOB, engineers performed a docking test of the Apollo 10 CSM and LM on Dec. 11. Following the test, workers mated the LM’s ascent and descent stages in a vacuum chamber in preparation for altitude tests in January 1969. In parallel, engineers conducted altitude tests with the CM, with prime and backup crews participating.

Chief test pilot Joseph S. “Joe” Algranti ejects from the Lunar Landing Training Vehicle-1 (LLTV-1) with seconds to spare The LLTV-1 explodes as it crashes to the ground Algranti floats safely to the ground under his parachute
Left: Chief test pilot Joseph S. “Joe” Algranti ejects from the Lunar Landing Training Vehicle-1 (LLTV-1) with seconds to spare. Middle: The LLTV-1 explodes as it crashes to the ground. Right: Algranti floats safely to the ground under his parachute.

Apollo commanders used the Lunar Landing Training Vehicle (LLTV) to simulate flying the LM, especially the final 200 feet of the descent. Following Armstrong’s May 6, 1968, crash in an earlier version of the training aircraft, NASA grounded the fleet until engineers could take corrective action. Flights with LLTV-1 resumed at Ellington on Oct. 3, 1968, with MSC chief test pilot Joseph S. “Joe” Algranti at the controls. During the next two months, Algranti and fellow MSC pilot H.E. “Bud” Ream completed 14 test flights with LLTV-1 to check out the vehicle. Ream also piloted LLTV-2’s first two flights beginning Dec. 5. During LLTV-1’s 15th flight on Dec. 8, the final certification flight before resuming astronaut training, Algranti took the vehicle to 680 feet altitude and began a lunar landing simulation run. The vehicle began to oscillate in all three axes, which Algranti tried to control. But unexpected wind gusts exceeded the craft’s aerodynamic control limits and it began a sudden descent. At 100 feet altitude, and with less than a second to spare, Algranti ejected and safely parachuted to the ground with only minor bruises, but LLTV-1 crashed and burned beyond repair.

At Houston’s Ellington Air Force Base, workers prepare the LLTV-3 for packing into the Super Guppy cargo plane Workers at Ellington load the LLTV-3 into the Super Guppy for shipping to NASA’s Langley Research Center in Hampton, Virginia, for wind tunnel tests
Left: At Houston’s Ellington Air Force Base, workers prepare the LLTV-3 for packing into the Super Guppy cargo plane. Right: Workers at Ellington load the LLTV-3 into the Super Guppy for shipping to NASA’s Langley Research Center in Hampton, Virginia, for wind tunnel tests.

Once again, NASA grounded the LLTVs and MSC Director Robert R. Gilruth set up an investigation board, chaired by NASA astronaut Walter M. Schirra. To better understand the vehicle’s aerodynamic characteristics, in late December NASA shipped LLTV-3 to the Langley Research Center in Hampton, Virginia, where engineers tested it in the wind tunnel. Findings from the board and from the Langley tests indicated that a gust of wind that overwhelmed the vehicle’s control limits caused the LLTV-1 crash, unrelated to Armstrong’s accident. Recommendations included increasing the level of thrust in the craft’s thrusters by 50 percent to provide an additional margin of safety. 

News from around the world in December 1968:

Dec. 6 – The Rolling Stones release their album “Beggars Banquet.”

Dec. 7 – The United States launches the Orbiting Astronomical Observatory-2 space telescope.

Dec. 11 – President-elect Richard M. Nixon introduces his 12 Cabinet nominees.

Dec. 11 – The film “Oliver!” opens in the U.S.

Dec. 16 – Musical-fantasy film “Chitty Chitty Bang Bang” premieres in London and two days later in New York City.

Dec. 16 – Led Zeppelin’s concert debut in Denver, as opener for Vanilla Fudge.

Dec. 30 – Frank Sinatra first records “My Way.”

Share

Details

Last Updated
Dec 19, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Pegasus barge delivers the SLS (Space Launch System) rocket’s core stage for the 2022 Artemis I mission to the turn basin at Kennedy Space Center in Florida in April 2021. Credits: NASA/Michael Downs Media are invited in late July to NASA’s Kennedy Space Center in Florida to see progress on the agency’s SLS (Space Launch System) Moon rocket as preparations continue for the Artemis II test flight around the Moon.
      Participants joining the multi-day events will see the arrival and unloading of the 212-foot-tall SLS core stage at the center’s turn basin before it is transported to the nearby Vehicle Assembly Building. The stage will arrive on NASA’s Pegasus barge from the agency’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
      Media also will see the twin pair of solid rocket boosters inside the Rotation, Processing, and Surge Facility at the spaceport, where NASA’s Exploration Ground Systems Program is processing the motor segments in preparation for rocket assembly. NASA and industry subject matter experts will be available to answer questions. At launch, the SLS rocket’s two solid rocket boosters and four RS-25 engines, located at the base of its core stage, will produce 8.8 million pounds of thrust to send the first crewed mission of the Artemis campaign around the Moon.
      Media interested in participating must apply for credentials at:
      https://media.ksc.nasa.gov
      To receive credentials, international media must apply by Friday, June 28, and U.S. citizens must apply by Thursday, July 5.
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the activities when they are finalized. NASA’s media accreditation policy is available online. For questions about accreditation, please email ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      The approximately 10-day Artemis II flight will test NASA’s SLS rocket, Orion spacecraft, and ground systems for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon.
      Learn more about Artemis at:
      www.nasa.gov/artemis/
      -end-
      Rachel Kraft 
      Headquarters, Washington 
      281-358-1100  
      rachel.h.kraft@nasa.gov  
      Tiffany Fairley/Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      tiffany.l.fairley@nasa.gov/antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Humans in Space Kennedy Space Center Space Launch System (SLS) View the full article
    • By NASA
      17 Min Read The Next Full Moon is the Strawberry Moon
      A perigee full moon, or supermoon, is seen next to the Empire State Building, Sunday, Sept. 27, 2015 in New York City. Credits:
      NASA/Joel Kowsky The Next Full Moon is the Strawberry Moon; the Flower, Hot, Hoe, or Planting Moon; the Mead or Honey Moon; the Rose Moon; Vat Purnima; Poson Poya; and the LRO Moon.
      The next full Moon will be Friday evening, June 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 9:08 PM EDT. This will be Saturday from Greenland and Cape Verde time eastward across Eurasia, Africa, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars will show this full Moon on Saturday, June 22, the date in Coordinated Universal Time (UTC). The Moon will appear full for about three days around this time, from Thursday evening through Sunday morning.
      In the 1930s the Maine Farmer’s Almanac began publishing “Indian” names for full Moons and these names are now widely known and used. According to this Almanac, as the full Moon in June this is the Strawberry Moon, a name that comes from the relatively short season for harvesting strawberries in the north-eastern United States. Other seasonal names that I have found in various sources (sometimes with conflicting information about whether they are of European or Native American origin) are the Flower Moon, Hot Moon, Hoe Moon, and Planting Moon.
      An old European name for this full Moon is the Mead or Honey Moon. Mead is a drink created by fermenting honey mixed with water and sometimes fruits, spices, grains, or hops. In some countries Mead is also called Honey Wine (though in others Honey Wine is made differently). Some writings suggest the time around the end of June was when honey was ready for harvesting, which made this the “sweetest” Moon. The word “honeymoon” traces back to at least the 1500s in Europe. The tradition of calling the first month of marriage the “honeymoon” may be tied to this full Moon because of the custom of marrying in June or because the “Honey Moon” is the “sweetest” Moon of the year. There doesn’t appear to be enough evidence to support a 19th century theory that the word entered English from the custom of gifting newlyweds mead for their first month of marriage.
      Another European name for this full Moon is the Rose Moon. Some sources indicate “Rose Moon” comes from the roses that bloom this time of year. Others indicate that the name comes from the color of the full Moon. The orbit of the Moon around the Earth is in almost the same plane as the orbit of the Earth around the Sun (only about 5 degrees off). On the summer solstice the Sun appears highest in the sky for the year. Full Moons are opposite the Sun, so a full Moon near the summer solstice will be low in the sky. Particularly for Europe’s higher latitudes, when the full Moon is low it shines through more atmosphere, making it more likely to have a reddish color (for the same reasons that sunrises and sunsets are red). For the Washington, DC area, the full Moon on the night from the evening of June 21 to the morning of June 22 will have the lowest full Moon of the year, reaching only 21.9 degrees above the southern horizon at 1:20 AM EDT.
      For Hindus this is Vat Purnima. During the 3 days of this full Moon married women will show their love for their husbands by tying a ceremonial thread around a banyan tree. The celebration is based on the legend of Savitri and Satyavan.
      For Buddhists this full Moon is Poson Poya. The Poson holiday in Sri Lanka celebrates the introduction of Buddhism in 236 BCE.
      Another tribe has also given a name to this full Moon. This tribe is now scattered but mostly lived in the mid-Atlantic region of the United States. This tribe’s language is primarily English, but with a liberal smattering of acronyms, arcane scientific and engineering terms, and Hawaiian phrases (cheerfully contributed by the former Deputy Project Manager). Comprised of people from all backgrounds, many of whom have gone on to join other tribes, this tribe was devoted to the study of the Moon. This tribe calls June’s full Moon the LRO Moon, in honor of the spacecraft they launched towards the Moon 15 years ago, on June 18, 2009. NASA’s Lunar Reconnaissance Orbiter is still orbiting the Moon providing insights about our nearest celestial neighbor, some of which help us understand our own planet. See https://www.nasa.gov/mission_pages/LRO/main/index.html for more information.
      Many lunar and lunisolar calendars start the months on or just after the new Moon and the full Moon is near the middle of the month. This full Moon is near the middle of the fifth month of the Chinese year of the Dragon, Sivan in the Hebrew calendar, and Dhu al-Hijjah, the final month of the Islamic year and one of the four sacred months during which fighting is forbidden.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. If you’re not allergic, enjoy the strawberries, flowers, and honey during this “sweetest” month of the year, and take note of how low in the sky this full Moon will be.
      As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, DC):
      As summer begins the daily periods of sunlight start to gradually shorten, having been at their longest on the summer solstice on the day before this full Moon. On Friday, June 21, 2024 (the day of the full Moon), morning twilight will begin at 4:30 AM, sunrise will be at 5:43 AM, solar noon at 1:10 PM when the Sun will reach its maximum altitude of 74.6 degrees, sunset will be at 8:37 PM, and evening twilight will end at 9:49 PM. The period of daylight will be 1.2 seconds shorter than on the summer solstice the previous day.
      The solar days (as measured, for example, from solar noon to solar noon on a sundial) are longer than 24 hours near the solstices, so the earliest sunrises of the year occur before the summer solstice and the latest sunsets occur after the solstice. For the Washington, DC area and similar latitudes at least (I’ve not checked for other latitudes), Thursday, June 27, will have the latest sunset of the year, with sunset at 8:37:30 PM EDT.
      By Sunday, July 21, (the day of the full Moon after next), morning twilight will begin at 4:52 AM, sunrise will be at 6:00 AM, solar noon at 1:15 PM when the Sun will reach its maximum altitude of 71.4 degrees, sunset will be at 8:28 PM, and evening twilight will end at 9:37 PM.
      The comet 13P/Olbers is expected to peak at magnitude 7.5 in early July, too dim to see with the naked eye. The two meteor showers expected to peak this lunar cycle will be difficult to see. The full Moon will interfere with the peak of the June Bootids (170 JBO) on June 27. The July Pegasids (175 JPE), peaking on July 10, is only expected to show 3 meteors per hour (under ideal conditions).
      Evening Sky Highlights:
      On the evening of Friday, June 21, 2024 (the evening of the day of the full Moon), as twilight ends (at 9:49 PM EDT), the rising Moon will be 7 degrees above the southeastern horizon. The bright planets Venus and Mercury will be below the horizon, with Venus setting 21 minutes and Mercury setting 43 minutes after sunset. Mercury may be visible from about 30 minutes after sunset until it sets 13 minutes later. The bright object appearing closest to overhead will be the star Arcturus at 69 degrees above the south-southwestern horizon. Arcturus is the brightest star in the constellation Boötes the herdsman or plowman. It is the 4th brightest star in our night sky and is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun.
      As this lunar cycle progresses the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). June 30 will be the first evening that the bright planet Mercury will be above the west-northwestern horizon as evening twilight ends and the first evening that the bright planet Venus will be above the horizon 30 minutes after sunset (an approximation of when Venus will start emerging from the glow of dusk. Mercury will shift to the left low along the horizon, reaching its highest above the horizon (just 2 degrees as twilight ends) on July 13. The waxing Moon will pass by Regulus on July 8 and 9, Spica on July 13, and Antares on July 17.
      By the evening of Sunday, July 21 (the evening of the day of the full Moon after next), as twilight ends (at 9:37 PM EDT), the rising Moon will be 3 degrees above the east-southeastern horizon. The bright planet Mercury will be 1 degree above the west-northwestern horizon and 6 minutes away from setting. The planet Venus will set 22 minutes before twilight ends, but will be bright enough to see in the glow of dusk low on the west-northwestern horizon before it sets. The bright object appearing closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 65 degrees above the eastern horizon. Vega is one of the three bright stars in the Summer Triangle along with Deneb, and Altair. Vega is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      Morning Sky Highlights:
      On the morning of Friday, June 21, 2024 (the morning of the day of the full Moon), as twilight begins (at 4:31 AM EDT), the setting full Moon will be 2 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at just 3 degrees above the east-northeastern horizon. The planet Mars will be 19 degrees above the eastern horizon and the planet Saturn (almost as bright as Mars) will be 37 degrees above the southeastern horizon. The bright object appearing closest to overhead will be the star Deneb at 80 degrees above the northwestern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.
      As this lunar cycle progresses, Jupiter, Saturn, and the background of stars will appear to shift westward each evening, with Mars shifting more slowly and to the left. The waning Moon will pass by Saturn on June 27, on Mars on July 1, the Pleiades star cluster on July 2, and Jupiter on July 3.
      By the morning of Sunday, July 21 (the morning of the day of the full Moon after next), as twilight begins (at 4:52 AM EDT), the setting full Moon will be 7 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 25 degrees above the eastern horizon. Mars will be 33 degrees above the eastern horizon and Saturn 45 degrees above the southern horizon. The bright object appearing closest to overhead still will be the star Deneb at 56 degrees above the west-northwestern horizon.
      Detailed Daily Guide:
      Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area).
      Sunday morning, June 16, 2024, will be the first morning that the bright planet Jupiter will be above the east-northeastern horizon as morning twilight begins (at 4:30 AM EDT).
      Sunday evening into early Monday morning, June 16 to 17, 2024, the bright star Spica will appear near the waxing gibbous Moon. As evening twilight ends (at 9:48 PM EDT) Spica will be 3.5 degrees to the right of the Moon. By the time Spica sets on the west-southwestern horizon 4.5 hours later (at 2:16 AM) it will be 5 degrees to the lower right of the Moon. Around the northern part of the boundary between Europe and Asia the Moon will actually block Spica from view.
      Wednesday evening, June 19, 2024, will be the first evening the bright planet Mercury will be above the west-northwestern horizon 30 minutes after sunset, an approximation of when it will begin emerging from the glow of dusk. Each evening after this Mercury should become easier to spot and by the end of June will be above the horizon as evening twilight ends.
      Wednesday evening into Thursday morning, June 19 to 20, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:49 PM EDT) Antares will be 5 degrees to the lower left of the Moon. The Moon will reach its highest in the sky 1.5 hours later (at 11:25 PM EDT) with Antares 4 degrees to the left of the Moon. The Moon will set first on the southwestern horizon (at 4:03 AM) with Antares 2 degrees to the upper left.
      Thursday afternoon, June 20, 2024, at 4:51 PM EDT will be the summer solstice, the astronomical end of spring and start of summer. This will be the day with the longest period of sunlight (14 hours, 53 minutes, 42.5 seconds) but will not be the day with the earliest sunrise or the latest sunset.
      As mentioned above, the full Moon will be Friday evening, June 21, 2024, at 9:08 PM EDT. This will be on Saturday from Greenland and Cape Verde time eastward across Eurasia, Africa, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars will show this full Moon on Saturday, June 22. This will be the lowest full Moon of the year (reaching only 21.9 degrees above the southern horizon Saturday morning at 1:20 AM). The Moon will appear full for about three days around this time, from Thursday evening through Sunday morning.
      Thursday morning, June 27, 2024, the planet Saturn will appear near the waning gibbous Moon. As Saturn rises on the eastern horizon (at 12:26 AM EDT) it will be 6 degrees to the lower left of the Moon. By the time morning twilight begins (at 4:33 AM) Saturn will be 4 degrees to the upper left of the Moon.
      Thursday morning June 27, 2024, the Moon will be at perigee, its closest to the Earth for this orbit.
      For the Washington, DC area and similar latitudes, at least, Thursday, June 27, 2024, will have the latest sunset of the year (with sunset at 8:37:30 PM EDT).
      Friday afternoon, June 28, 2024, the waning Moon will appear half-full as it reaches its last quarter at 5:53 PM EDT (when the Moon will be below the horizon).
      Sunday evening, June 30, 2024, will be the first evening that the bright planet Mercury will be above the west-northwestern horizon as evening twilight ends (at 9:49 PM EDT). It will also be the first evening that the bright planet Venus will be above the west-northwestern horizon (at 9:07 PM) 30 minutes after sunset, an approximation of when Venus will start emerging from the glow of dusk.
      Monday morning, July 1, 2024, the planet Mars will appear 5 degrees to the lower left of the waning crescent Moon. Mars will rise last on the east-northeastern horizon (at 2:29 AM EDT) and morning twilight will begin a little more than 2 hours later (at 4:35 AM).
      Tuesday morning, July 2, 2024, the Pleiades star cluster will appear 5 degrees to the lower left of the waning crescent Moon. The Pleiades will rise last on the east-northeastern horizon (around 2:46 AM EDT) and morning twilight will begin a little less than 2 hours later (at 4:35 AM).
      Friday afternoon, July 5, 2024, the Earth will be at aphelion, its farthest away from the Sun in its orbit, 3.4% farther away than it was at perihelion in early January. Since the intensity of light drops off as the square of the distance, the sunlight reaching the Earth at aphelion is about 6.5% less bright than sunlight reaching the Earth at perihelion.
      Friday evening, July 5, 2024, at 6:57 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Saturday, July 6 will be the start of the sixth month of the Chinese year of the Dragon. Sundown on July 6 will mark the start of Tammuz in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Saturday, July 6, will probably mark Al-Hijra, the Islamic New Year and the beginning of the month of Muharram, although Muharram is one of four months for which the calendar dates may be adjusted by the religious authorities of Saudi Arabia after actual sightings of the lunar crescent. Al-Hijra is a public holiday in many Muslim countries. Customs vary, but most include observing the day quietly and practicing gratitude. Muharram is one of the four sacred months during which warfare is forbidden.
      Sunday evening, July 7, 2024, the planet Mercury will appear 3 degrees below the thin, waxing crescent Moon, with the Beehive cluster (visible with binoculars) 1.5 degrees to the lower right of Mercury. As evening twilight ends (at 9:47 PM EDT) the Moon will be 4 degrees above the west-northwestern horizon, with Mercury a little more than 1 degree and the Beehive cluster a little less than 1 degree above the horizon. The Beehive cluster will set first 7 minutes later (at 9:54 PM), followed by Mercury 4 minutes after that (at 9:58 PM) and the Moon 19 minutes after Mercury set (at 10:17 PM).
      Friday morning, July 12, 2024, at 4:12 AM EDT (when we can’t see it), the Moon will be at apogee, its farthest from the Earth for this orbit.
      Saturday evening, July 13, 2024, the Moon will appear half-full as it reaches its first quarter at 6:49 PM EDT.
      Saturday evening, July 13, 2024, will be when the planet Mercury will reach its highest (2 degrees) above the west-northwestern horizon as evening twilight ends (at 9:43 PM EDT).
      Saturday night, July 13, 2024, the bright star Spica will appear near the half-full Moon, so near that for part of the night the Moon will block Spica from view for much of North America (see http://lunar-occultations.com/iota/bstar/0714zc1925.htm for a map and information on the locations that will see this occultation). For the location of NASA Headquarters in Washington, DC (angles and times will be different for other locations), as evening twilight ends (at 9:43 PM EDT), Spica will be 1 degree to the left of the Moon. If you are in a location that will see this occultation, you should be able to see Spica vanish behind the dark half of the Moon (at 11:26 PM for the DC area). For the Washington, DC area the Moon will set (at 12:32 AM) before Spica reemerges. For locations farther west, the brightness of the lit half of the Moon will make it hard to see when Spica emerges.
      Wednesday night into early Thursday morning, July 17 to 18, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:40 PM EDT) Antares will be 3 degrees to the upper right of the Moon. The Moon will reach its highest in the sky 27 minutes later (at 10:07 PM). As Antares sets (at 2:21 AM) it will be 5 degrees to the lower right of the Moon. For much of the southern part of Africa the Moon will pass in front of Antares earlier on Wednesday. See http://lunar-occultations.com/iota/bstar/0717zc2366.htm for a map and information on the locations that will see this occultation. The full Moon after next will be Sunday morning, July 21, 2024, at 6:17 AM EDT. This will be late Saturday night for the International Date Line West and the American Samoa and Midway time zones and early Monday morning for Line Islands Time. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend.
      Keep Exploring Discover More Topics From NASA
      Moon



      Moon Facts



      Moon Phases



      Moon Stories


      View the full article
    • By European Space Agency
      Image: Drone test of planetary landing radar View the full article
    • By NASA
      The Manned Orbiting Laboratory (MOL), a joint classified project of the U.S. Air Force (USAF) and the National Reconnaissance Office (NRO), sought to establish a crewed platform in low Earth orbit to obtain high-resolution photographic imagery of America’s 1960s Cold War adversaries. Approved in 1965, the MOL Program envisioned a series of space stations launched from a new pad in California and placed in low polar Earth orbit. Two-man crews, launching and returning to Earth aboard modified Gemini-B capsules, would work aboard the stations for 30 days at a time. Although the Air Force selected 17 pilots and built prototype hardware, the program faced budget pressures and competition from rapidly advancing technologies in uncrewed reconnaissance capabilities, leading to its cancellation on June 10, 1969.

      Left: Patch of the Manned Orbiting Laboratory (MOL) Program. Middle: Illustration of the MOL as it would have appeared in orbit. Image credit: Courtesy National Air and Space Museum. Right: Space Launch Complex-6 under construction in 1966 at Vandenberg Air Force (now Space Force) Base in California. Image credit: Courtesy National Reconnaissance Office.
      Announced by Defense Secretary Robert S. McNamara in December 1963 and formally approved by President Lyndon B. Johnson in August 1965, the MOL Program envisioned a series of 60-foot-long space stations in low polar Earth orbit, occupied by 2-person crews for 30 days at a time, launching and returning to Earth aboard modified Gemini-B capsules. Externally similar to NASA’s Gemini spacecraft, the MOL version’s major modification involved a hatch cut into the heat shield that allowed the astronauts to internally access the laboratory located behind the spacecraft without the need for a spacewalk. While MOL astronauts would carry out a variety of experiments, a telescope with sophisticated imaging systems for military reconnaissance made up the primary payload in the laboratory. The imaging system, codenamed Dorian and carrying the Keyhole KH-10 designation, included a 72-inch diameter primary mirror designed to provide high resolution images of targets of military interest. To reach their polar orbits, MOLs would launch from Vandenberg Air Force (now Space Force) Base (AFB) in California. Construction of Space Launch Complex-6 (SLC-6) there began in March 1966 to accommodate the Titan-IIIM launch vehicle. The sensitive military nature of MOL resulted in its top-secret classification, not declassified by the NRO until October 2015.

      The three selection groups of Manned Orbiting Laboratory pilots. Left:  Group 1 – Michael J. Adams, Albert H. Crews, John L. Finley, Richard E. Lawyer, Lachlan Macleay, Francis G. Neubeck, James M. Taylor, and Richard H. Truly. Middle: Group 2 – Robert L. Crippen, Robert F. Overmyer, Karol J. Bobko, C. Gordon Fullerton, and Henry W. Hartsfield. Right: Group 3 – Robert T. Herres, Robert H. Lawrence, Donald H. Peterson, and James A. Abrahamson. Image credits: Courtesy U.S. Air Force.
      The USAF selected 17 pilots in three groups for the MOL program. The first group, selected on Nov. 12, 1965, consisted of eight pilots – Michael J. Adams, Albert H. Crews, John L. Finley, Richard E. Lawyer, Lachlan Macleay, Francis G. Neubeck, James M. Taylor, and Richard H. Truly. Adams retired from the MOL program in July 1966 to join the X-15 program. While making his seventh flight, he died in November 1967 when his aircraft crashed. Finley left the program in April 1968, returning to the U.S. Navy. The second group, selected on June 17, 1966, consisted of five pilots – Karol J. “Bo” Bobko, Robert L. Crippen, C. Gordon Fullerton, Henry W. Hartsfield, and Robert F. Overmyer. The third and final group of four pilots, chosen on June 30, 1967, comprised James A. Abrahamson, Robert T. Herres, Robert H. Lawrence, and Donald H. Peterson. Lawrence has the distinction as the first African American selected as an astronaut by any national space program. He died in the crash of an F-104 in December 1967.

      Group photo of 14 of the 15 Manned Orbiting Laboratory pilots still in the program in early 1968 – John L. Finley, front row left, Richard E. Lawyer, James M. Taylor, Albert H. Crews, Francis G. Neubeck, and Richard H. Truly; Robert T. Herres, back row left, James W. Hartsfield, Robert F. Overmyer, C. Gordon Fullerton, Robert L. Crippen, Donald H. Peterson, Karol J. Bobko, and James A. Abrahamson. Michael J. Adams had left the program and died in an X-15 crash, Robert H. Lawrence had died in a F-104 crash, and Lachlan Macleay does not appear for unknown reasons.
      The only space launch in the MOL program occurred on Nov. 3, 1966, when a Titan-IIIC rocket took off from Cape Canaveral Air Force (now Space Force) Station’s Launch Complex 40. The rocket carried a MOL mockup, without the KH-10 imaging payload, and a Gemini-B capsule refurbished after it flew NASA’s uncrewed Gemini 2 suborbital mission in January 1965. This marked the only reflight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. The flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Sailors aboard the U.S.S. La Salle (LPD-3) recovered the Gemini-B capsule near Ascension Island in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. Visitors can view it on display at the Cape Canaveral Space Force Museum. The MOL mockup entered Earth orbit and released three satellites. It also carried a suite of 10 experiments called Manifold, ranging from cell growth studies to tests of new technologies. Although the experiments could have operated for 75 days, the MOL stopped transmitting after 30 days, and decayed from orbit Jan. 9, 1967.

      Left: The only operational launch of the Manned Orbiting Laboratory (MOL) program, a Gemini-B capsule and a MOL mockup atop a Titan-IIIC rocket in 1966. Middle: The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Right: Former MOL and NASA astronaut Robert L. Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top.
      By 1969, the MOL program ran several years behind schedule and significantly over budget, and other than the one test flight had not flown any actual hardware. Although no flight hardware yet existed, aside from the long lead time mirrors for the imaging system, plans in May 1969 called for four 30-day MOL missions at 6-month intervals starting in January 1972. However, technology for uncrewed military reconnaissance had advanced to the stage that the KH-10 system proposed for MOL had reached obsolescence. Following a review, the new administration of President Richard M. Nixon, faced with competing priorities for the federal budget, announced the cancellation of the MOL program on June 10, 1969. 

      Left: Prototypes of elements of the Manned Orbiting Laboratory (MOL) under construction. Middle: Medium fidelity mockup of the MOL crew cabin, with suited crew member and the narrow tunnel leading to the Gemini-B capsule. Right: Former MOL and NASA astronaut Robert L. Crippen stands next to the spacesuit developed for the MOL program. Image credits: Courtesy National Reconnaissance Office.
      Although the sudden cancellation came as a shock to those working on the program, some of the personnel involved as well as some of the hardware developed for it, made their way into other agencies and projects. For example, the Air Force had developed a flexible spacesuit required by the MOL pilots to navigate through the narrow tunnel between the Gemini-B capsule and the laboratory – that technology transferred to NASA for future spacesuit development. The waste management system designed for use by MOL pilots flew aboard Skylab. The MOL laboratory simulator and the special computer to operate it also transferred to NASA. The technology developed for the acquisition and tracking system and the mission development simulator for the KH-10 imaging system found its way into NASA’s earth remote sensing program.

      Official NASA photograph of the Group 7 astronauts – Karol J. Bobko, left, C. Gordon Fullerton, Henry W. Hartsfield, Robert L. Crippen, Donald H. Peterson, Richard H. Truly, and Robert F. Overmyer – transfers from the Manned Orbiting Laboratory program.
      After the cancellation of the MOL program, NASA invited the younger (under 35) MOL pilots to join its astronaut corps. Bobko, Crippen, Fullerton, Hartsfield, Overmyer, Peterson, and Truly transferred to NASA on August 14, 1969, as the Group 7 astronaut class. In 1972, Crippen and Bobko participated in the 56-day ground-based Skylab Medical Experiment Altitude Test, a key activity that contributed to Skylab’s success. Although it took nearly 12 years for the first of the MOL transfers to make it to orbit, all of them went on to fly on the space shuttle in the 1980s, six of them as commanders. In an ironic twist, NASA assigned Crippen to command the first space shuttle polar orbiting mission (STS-62A) that would have launched from the SLC-6 pad at Vandenberg in 1986. But after the January 1986 Challenger accident, the Air Force reduced its reliance on the shuttle as a launch platform and cancelled the mission. Truly served as NASA administrator from 1989 to 1992 and Crippen as the director of NASA’s Kennedy Space Center in Florida from 1992 to 1995. NASA hired Crews, not as an astronaut but as a pilot, and he stayed with the agency until 1994. Of the MOL astronauts that did not meet NASA’s age limit requirement, many went on to have stellar careers. Abrahamson joined NASA in 1981 as associate administrator for manned space flight, then went on to lead the Strategic Defense Initiative from 1984 to 1989. Herres served as vice chairman of the Joint Chiefs of Staff from 1987 to 1990.

      Left: Space shuttle Enterprise during fit checks at the SLC-6 launch facility at Vandenberg Air Force (now Space Force) Base in 1985. Middle: Athena rocket awaits launch on SLC-6 in 1997. Right: Delta-IV Heavy lifts off from SLC-6 in 2011.
      Following cancellation of the MOL program, the Air Force mothballed the nearly completed SLC-6 at Vandenberg. In 1972, the Air Force and NASA began looking at SLC-6 as a pad to launch space shuttles with payloads requiring polar orbits, with the decision made in 1975. Workers began converting SLC-6 to launch the space shuttle in 1979. Although space shuttle Enterprise used SLC-6 for fit checks in 1985, the Challenger accident the following year caused the Air Force to cancel plans to use the space shuttle to launch polar orbiting satellites, and they once again mothballed the pad. Following modifications, small Athena rockets used the pad between 1995 and 1999, the first launches from the facility after 30 years of development and modifications. Another conversion begun in 1999 modified SLC-6 to launch Delta-IV and Delta-IV Heavy rockets starting in 2006, with the last flight in 2022. SpaceX leased SLC-6 in April 2023 to begin launches of Falcon 9 and Falcon Heavy rockets in 2025.

      Left: Schematic of the optical system of the Manned Orbiting Laboratory (MOL), including the 72-inch primary mirror at right. Image credit: courtesy: NRO. Right: The Multiple Mirror Telescope Observatory on Mount Hopkins, Arizona, in its original six-mirror configuration using mirrors from the MOL Program. Image credit: Courtesy Multiple Mirror Telescope.
      The NRO transferred six surplus 72-inch mirrors from the cancelled KH-10 program to the Smithsonian Astrophysical Observatory for the Multiple-Mirror Telescope (MMT) it built in association with the University of Arizona, located on Mount Hopkins, Arizona. By combining the light of the six mirrors, they achieved an effective light collecting area of a single 177-inch telescope mirror. The MMT operated in this six-mirror configuration for nearly 20 years before a single 215-inch mirror replaced them.
      Read Abrahamson’s, Bobko’s, Crew’s, Crippen’s, Fullerton’s, Hartsfield’s, Peterson’s, and Truly’s recollections of the MOL program in their oral history interviews with the JSC History Office. In 2019, the NRO held a panel discussion with MOL pilots Abrahamson, Bobko, Macleay, Crews, and Crippen, by then free to talk about their experiences during the now declassified program.
      Explore More
      15 min read 55 Years Ago: Star Trek Final Episode Airs, Relationship with NASA Endures
      Article 7 days ago 6 min read 25 Years Ago: STS-96 Resupplies the Space Station
      Article 2 weeks ago 6 min read 15 Years Ago: First Time all Partners Represented aboard the International Space Station
      Article 2 weeks ago View the full article
    • By NASA
      4 min read
      Hubble Finds Surprises Around a Star That Erupted 40 Years Ago
      This artist’s concept shows the nova system HM Sagittae (HM Sge), where a white dwarf star is pulling material from its red giant companion. This forms a blazing hot disk around the dwarf, which can unpredictably undergo a spontaneous thermonuclear explosion as the infall of hydrogen from the red giant grows denser and reaches a tipping point. These fireworks between companion stars are fascinating to astronomers by yielding insights into the physics and dynamics of stellar evolution in binary systems. NASA, ESA, Leah Hustak (STScI)
      Download this image

      Astronomers have used new data from NASA’s Hubble Space Telescope and the retired SOFIA (Stratospheric Observatory for Infrared Astronomy) as well as archival data from other missions to revisit one of the strangest binary star systems in our galaxy – 40 years after it burst onto the scene as a bright and long-lived nova. A nova is a star that suddenly increases its brightness tremendously and then fades away to its former obscurity, usually in a few months or years.
      Between April and September 1975, the binary system HM Sagittae (HM Sge) grew 250 times brighter. Even more unusual, it did not rapidly fade away as novae commonly do, but has maintained its luminosity for decades. Recently, observations show that the system has gotten hotter, but paradoxically faded a little.
      HM Sge is a particular kind of symbiotic star where a white dwarf and a bloated, dust-producing giant companion star are in an eccentric orbit around each other, and the white dwarf ingests gas flowing from the giant star. That gas forms a blazing hot disk around the white dwarf, which can unpredictably undergo a spontaneous thermonuclear explosion as the infall of hydrogen from the giant grows denser on the surface until it reaches a tipping point. These fireworks between companion stars fascinate astronomers by yielding insights into the physics and dynamics of stellar evolution in binary systems.
      When I first saw the new data, I went – ‘wow this is what Hubble UV spectroscopy can do!’ – I mean it’s spectacular, really spectacular.
      Ravi Sankrit
      Astronomer
      “In 1975 HM Sge went from being a nondescript star to something all astronomers in the field were looking at, and at some point that flurry of activity slowed down,” said Ravi Sankrit of the Space Telescope Science Institute (STScI) in Baltimore. In 2021, Steven Goldman of STScI, Sankrit and collaborators used instruments on Hubble and SOFIA to see what had changed with HM Sge in the last 30 years at wavelengths of light from the infrared to the ultraviolet (UV).
      The 2021 ultraviolet data from Hubble showed a strong emission line of highly ionized magnesium that was not present in earlier published spectra from 1990. Its presence shows that the estimated temperature of the white dwarf and accretion disk increased from less than 400,000 degrees Fahrenheit in 1989 to greater than 450,000 degrees Fahrenheit now. The highly ionized magnesium line is one of many seen in the UV spectrum, which analyzed together will reveal the energetics of the system, and how it has changed in the last three decades.
      “When I first saw the new data,” Sankrit said, “I went – ‘wow this is what Hubble UV spectroscopy can do!’ – I mean it’s spectacular, really spectacular.”
      A Hubble Space Telescope image of the symbiotic star Mira HM Sge. Located 3,400 light-years away in the constellation Sagitta, it consists of a red giant and a white dwarf companion. The stars are too close together to be resolved by Hubble. Material bleeds off the red giant and falls onto the dwarf, making it extremely bright. This system first flared up as a nova in 1975. The red nebulosity is evidence of the stellar wind. The nebula is about one-quarter light-year across. NASA, ESA, Ravi Sankrit (STScI), Steven Goldman (STScI); Image Processing: Joseph DePasquale (STScI)
      Download this image

      With data from NASA’s flying telescope SOFIA, which retired in 2022, the team was able to detect the water, gas, and dust flowing in and around the system. Infrared spectral data shows that the giant star, which produces copious amounts of dust, returned to its normal behavior within only a couple years of the explosion, but also that it has dimmed in recent years, which is another puzzle to be explained.
      With SOFIA astronomers were able to see water moving at around 18 miles per second, which they suspect is the speed of the sizzling accretion disk around the white dwarf. The bridge of gas connecting the giant star to the white dwarf must presently span about 2 billion miles.
      The team has also been working with the AAVSO (American Association of Variable Star Observers), to collaborate with amateur astronomers from around the world who help keep telescopic eyes on HM Sge; their continued monitoring reveals changes that haven’t been seen since its outburst 40 years ago.
      “Symbiotic stars like HM Sge are rare in our galaxy, and witnessing a nova-like explosion is even rarer. This unique event is a treasure for astrophysicists spanning decades,” said Goldman.
      The initial results from the team’s research were published in the Astrophysical Journal, and Sankrit is presenting research focused on the UV spectroscopy at the 244th meeting of the American Astronomical Society in Madison, Wisconsin.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter


      Hubble Views the Dawn of a Sun-like Star


      Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow


      NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Ravi Sankrit
      Space Telescope Science Institute, Baltimore, MD
      Steven Goldman
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Jun 10, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Stars


      View the full article
  • Check out these Videos

×
×
  • Create New...