Members Can Post Anonymously On This Site
People Behind the Work at NASA Stennis
-
Similar Topics
-
By NASA
The Mass Spectrometer Observing Lunar Operations (MSolo) for NASA’s Volatile Investigating Polar Exploration Rover (VIPER) mission is prepared for packing inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 21, 2023. MSolo is a commercial off-the-shelf mass spectrometer modified to work in space and it will help analyze the chemical makeup of landing sites on the Moon, as well as study water on the lunar surface.NASA/Kim Shiflett A NASA-developed technology that recently proved its capabilities in the harsh environment of space will soon head back to the Moon to search for gases trapped under the lunar surface thanks to a new Cooperative Research and Development Agreement between NASA and commercial company Magna Petra Corp.
The Mass Spectrometer Observing Lunar Operations (MSOLO) successfully demonstrated the full range of its hardware in lunar conditions during the Intuitive Machines 2 mission earlier this year. Under the new agreement, a second MSOLO, mounted on a commercial rover, will launch to the Moon no earlier than 2026. Once on the lunar surface, it will measure low molecular weight volatiles in hopes of inferring the presence of rare isotopes, such as Helium-3, which is theorized to exist, trapped in the regolith, or lunar dust, of the Moon.
“This new mission opportunity will help us determine what volatiles are present in the lunar surface, while also providing scientific insight for Magna Petra’s goals,” said Roberto Aguilar Ayala, research physicist at NASA’s Kennedy Space Center in Florida. “Learning more about the lunar volatiles and their isotopes supports NASA’s goal of sustaining long-term human space exploration. We will need to extract resources locally to enhance the capabilities of our astronauts to further exploration opportunities on the lunar surface.”
The MSOLO instrument will be integrated on a commercial rover, selected by Magna Petra. The rover will allow MSOLO to gather the data needed for researchers to understand which low-molecular weight gases reside within the Moon’s surface.
NASA will work with the partner to integrate MSOLO so that it will function properly with the rover, and the partner will analyze and share data in real time with NASA to understand the location of these volatiles on the Moon and their ability to be extracted in the future.
Magna Petra hopes to understand the presence of Helium-3 isotope within the Moon’s surface, with the ultimate goal of collecting it and bringing it back to Earth for use in a variety of industries, including energy production through nuclear fusion, quantum computing, health care, and specialized laboratory equipment.
The MSOLO instrument began as a commercial off-the-shelf mass spectrometer designed to analyze volatiles used in the manufacturing of semi-conductors, which helped keep NASA’s development costs down. NASA modified the device to withstand the rigors of spaceflight and the Moon’s harsh conditions. On its first journey to the Moon, MSOLO was part of the Polar Resources Ice Mining Experiment 1.
Signed on April 2, the reimbursable agreement is the first of its kind established at NASA Kennedy. Under the agreement, Magna Petra will reimburse NASA for costs such as supporting MSOLO integration and testing with the rover, pre-mission preparation and mission operations of the instruments, and expertise in system engineering, avionics, and software.
“This innovative agreement promises to provide valuable data to both partners,” said Jonathan Baker, chief of Spaceport Development at NASA Kennedy. “This approach demonstrates NASA’s commitment to finding unique ways to work with commercial industry to help advance technology in a fiscally responsible way and enabling innovation for the benefit of humankind.”
Throughout the mission, NASA will retain ownership of MSOLO. Once the mission is complete, the instrument will no longer have access to power and communications and will remain on the surface of the Moon. The valuable data gathered during the mission will be submitted to the Planetary Data System for public dissemination.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
https://youtu.be/63uNNcCpxHI How are we made of star stuff?
Well, the important thing to understand about this question is that it’s not an analogy, it’s literally true.
The elements in our bodies, the elements that make up our bones, the trees we see outside, the other planets in the solar system, other stars in the galaxy. These were all part of stars that existed well before our Sun and Earth and solar system were even formed.
The universe existed for billions of years before we did. And all of these elements that you see on the periodic table, you see carbon and oxygen and silicon and iron, the common elements throughout the universe, were all put there by previous generations of stars that either blew off winds like the Sun blows off a solar wind, or exploded in supernova explosions and thrust their elements throughout the universe.
These are the same things that we can trace with modern telescopes, like the Hubble Telescope and the James Webb Space Telescope, the Chandra X-ray Observatory. These are all elements that we can map out in the universe with these observatories and trace back to the same things that form us and the elemental abundances that we see in stars now are the same things that we see in the Earth’s crust, we see in asteroids. And so we know that these are the same elements that were once part of these stars.
So the question of, “How are we made of star stuff?”, in the words of Carl Sagan, “The cosmos is within us. We are made of star stuff. We are a way for the universe to know itself.”
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Apr 28, 2025 Related Terms
General Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science Mission Directorate The Solar System The Universe Explore More
3 min read NASA Moon Observing Instrument to Get Another Shot at Lunar Ops
Article 16 mins ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
Article 1 hour ago 1 min read Earth Science Showcase – Kids Art Collection
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
“There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
Kris bedka
NASA Research Physical Scientist
“The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
kris bedka
NASA Research Physical Scientist
The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.”
During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
“The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground.
To learn more about lidar instruments at NASA visit:
NASA Langley Research Center: Generations of Lidar Expertise
About the Author
Charles G. Hatfield
Science Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
General Airborne Science Clouds Langley Research Center Explore More
3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
Article 3 days ago 4 min read Navigation Technology
Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.
Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
“I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
“I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
Explore More
2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
Article 3 days ago View the full article
-
By NASA
Explore Hubble Science Hubble Space Telescope Eye on Infinity: NASA… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Left to Right: Mars, a small portion of the Rosette Nebula, part of planetary nebula NGC 2899, barred spiral galaxy NGC 5335. Credits:
NASA, ESA, STScI; Image Processing: Joseph DePasquale (STScI), Alyssa Pagan (STScI) In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing an assortment of compelling images recently taken by Hubble, stretching from the planet Mars to star-forming regions, and a neighboring galaxy.
After more than three decades of perusing the universe, Hubble remains a household name — the most well-recognized and scientifically productive telescope in history. The Hubble mission is a glowing success story of America’s technological prowess, unyielding scientific curiosity, and a reiteration of our nation’s pioneering spirit.
“Hubble opened a new window to the universe when it launched 35 years ago. Its stunning imagery inspired people across the globe, and the data behind those images revealed surprises about everything from early galaxies to planets in our own solar system,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “The fact that it is still operating today is a testament to the value of our flagship observatories, and provides critical lessons for the Habitable Worlds Observatory, which we plan to be serviceable in the spirit of Hubble.”
Perched above Earth’s blurry atmosphere, Hubble’s crystal-clear views have been nothing less than transformative for the public’s perception of the cosmos. Through its evocative imagery, Hubble has made astronomy very relevant, engaging, and accessible for people of all ages. Hubble snapshots can portray the universe as awesome, mysterious, and beautiful — and at the same time chaotic, overwhelming, and foreboding.
A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Upper left: Mars. Upper right: planetary nebula NGC 2899. Lower left: a small portion of the Rosette Nebula. Lower right: barred spiral galaxy NGC 5335. Image: NASA, ESA, STScI; Image Processing: Joseph DePasquale (STScI), Alyssa Pagan (STScI) The 24,000-pound observatory was tucked away inside the space shuttle Discovery’s cargo bay and lofted into low Earth orbit on April 24, 1990. As the shuttle Discovery thundered skyward, the NASA commentator described Hubble as a “new window on the universe.” The telescope turned out to be exactly as promised, and more.
More scientific papers than ever are based on Hubble data, thanks to the dedication, perseverance, and skills of engineers, scientists, and mission operators. Astronauts chased and rendezvoused with Hubble on five servicing missions in which they upgraded Hubble’s cameras, computers, and other support systems. The servicing missions took place from 1993 to 2009.
The telescope’s mission got off to a shaky start in 1990 when an unexpected flaw was found in the observatory’s nearly eight-foot diameter primary mirror. Astronauts gallantly came to the rescue on the first shuttle servicing mission in December 1993 to improve Hubble’s sharpness with corrective optics.
To date, Hubble has made nearly 1.7 million observations, looking at approximately 55,000 astronomical targets. Hubble discoveries have resulted in over 22,000 papers and over 1.3 million citations as of February 2025. All the data collected by Hubble is archived and currently adds up to over 400 terabytes, representing the biggest dataset for a NASA astrophysics mission besides the James Webb Space Telescope.
Hubble’s long operational life has allowed astronomers to return to the same cosmic scenes multiple times to observe changes that happened during more than three decades: seasonal variability on the planets in our solar system, black hole jets travelling at nearly the speed of light, stellar convulsions, asteroid collisions, expanding supernova bubbles, and much more.
Hubble’s Senior Project Scientist, Dr. Jennifer Wiseman, takes you on a tour of all four Hubble 35th anniversary images.
Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris; Narrator: Dr. Jennifer Wiseman Before 1990, powerful optical telescopes on Earth could see only halfway across the cosmos. Estimates for the age of the universe disagreed by a big margin. Supermassive black holes were only suspected to be the powerhouses behind a rare zoo of energetic phenomena. Not a single planet had been seen around another star.
Among its long list of breakthroughs: Hubble’s deep field images unveiled myriad galaxies dating back to the early universe. The telescope also allowed scientists to precisely measure the universe’s expansion, find that supermassive black holes are common among galaxies, and make the first measurement of the atmospheres of exoplanets. Hubble also contributed to the discovery of dark energy, the mysterious phenomenon accelerating the expansion of universe, leading to the 2011 Nobel Prize in Physics.
The relentless pace of Hubble’s trailblazing discoveries kick-started a new generation of space telescopes for the 21st century. Hubble provided the first observational evidence that there were myriad distant galaxies for Webb to pursue in infrared wavelengths that reach even farther beyond Hubble’s gaze. Now, Hubble and Webb are often being used in complement to study everything from exoplanets to galaxy evolution.
Hubble’s planned successor, the Habitable Worlds Observatory, will have a significantly larger mirror than Hubble’s to study the universe in visible and ultraviolet light. It will be significantly sharper than Hubble and up to 100 times more sensitive to starlight. The Habitable Worlds Observatory will advance science across all of astrophysics, as Hubble has done for over three decades. A major goal of the future mission is to identify terrestrial planets around neighboring stars that might be habitable.
The Hubble Space Telescope continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Lee esta historia en español aquí
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
Mosaic of Hubble 35th Anniversary Targets
A selection of photogenic space targets to celebrate the 35th anniversary of NASA’s Hubble Space Telescope. Upper left: Mars. Upper right: planetary nebula NGC 2899. Lower left: a small portion of the Rosette Nebula. Lower right: barred spiral galaxy NGC 5335.
Mars Near Opposition 2024
This is a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. Mars was approximately 61 million miles from Earth. Thin water-ice clouds that are apparent in ultraviolet light give the Red Planet a frosty appearance.
Planetary Nebula NGC 2899
This Hubble Space Telescope image captures the beauty of the moth-like planetary nebula NGC 2899. This object has a diagonal, bipolar, cylindrical outflow of gas propelled by radiation and stellar winds. The colors are from glowing hydrogen and oxygen.
Dark Clouds in Rosette Nebula
This is a Hubble Space Telescope photo of a small portion of the Rosette Nebula, a huge star-forming region spanning 100 light-years across and located 5,200 light-years away. Dark clouds of hydrogen gas laced with dust are silhouetted across the image.
Rosette Nebula Context Image
The Rosette Nebula is a vast star-forming region, 100 light-years across, that lies at one end of a giant molecular cloud. The background image is from the Digitized Sky Survey, while the inset is a small portion of the nebula as photographed by the Hubble Space Telescope.
NGC 5335
NASA’s Hubble Space Telescope captured in exquisite detail a face-on view of a remarkable-looking galaxy. NGC 5335 is categorized as a flocculent spiral galaxy with patchy streamers of star formation across its disk.
Mars Near Opposition Compass Image
These two images of Mars and its moon Phobos were captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3) on consecutive days in December 2024. Compass arrows and a color key are provided for reference.
Planetary Nebula NGC 2899 Compass Image
This image of planetary nebula NGC 2899 was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference.
Dark Clouds in Rosette Nebula Compass Image
This image of dark clouds in the Rosette Nebula was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference.
NGC 5335 Compass Image
This image of barred spiral galaxy NGC 5335 was captured by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). The image shows a scale bar, compass arrows, and color key for reference.
Mars Rotation
This animation was assembled from a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. At the midpoint of the Hubble observations, Mars was approximately 61 million miles from Earth. The photos were then mapped onto a sphere, which is the…
Planetary Nebula NGC 2899
This video zooms across 6,500 light-years through a star-studding field to visit the planetary nebula NGC 2899, as photographed by the Hubble Space Telescope. The nebula has a diagonal bipolar structure formed by a cylindrical-shaped outflow of hot gasses and radiation from the c…
Rosette Nebula
This video offers a close-up look at a small portion of the magnificent Rosette Nebula, as photographed by the Hubble Space Telescope. Though Hubble cannot take three-dimensional pictures, this video is a visualization treatment of the photo to give a sense of depth with foregrou…
Share
Details
Last Updated Apr 23, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Mars Nebulae Planetary Nebulae Planetary Science Planets Spiral Galaxies Stars The Solar System The Universe
Additional Links
Hubble’s 35th Anniversary page
NASA Ciencia: Con la mirada en el infinito: La NASA celebra 35 años de la puesta en órbita del telescopio Hubble
ESA Hubble’s Story
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s 35th Anniversary
Hubble Images
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.