Jump to content

Armstrong Flight Research Center: A Year in Review


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

It was an abundant year of innovation, exploration, and inspiration for NASA’s Armstrong Flight Research Center in Edwards, California. NASA Armstrong continues to demonstrate America’s leadership in aeronautics, Earth and space science, and aerospace technology. Our researchers, engineers, and mission support teams continually seek to revolutionize aviation, add to mankind’s knowledge of the universe, and contribute to the understanding and protection of Earth.

The video above shows many of our achievements, below are a few special moments.

The X-59 achieved a major milestone when the supersonic research aircraft was moved from its construction site to the flight line for ground testing. At the same time, project teams were busy preparing for the aircraft’s first and subsequent flights, while also advancing shock wave photography, trained aircrew on upgraded life support systems, prepared to test updated ground microphone stations designed to measure the X-59’s quiet sonic thump, and began getting the aircraft painted in preparation for its unveiling.

NASA’s Advanced Air Mobility mission continued to work with industry partners who are building innovative new aircraft like electric air taxis and drones. The team explored how these new designs may help travelers and cargo move between and in cities. At NASA Armstrong, we built a custom virtual-reality flight simulator to explore the air taxi ride experience. We also collected data needed to allow for new self-flying technology, to help make our communities more connected than ever before.

Because wind affects all aircraft, our researchers measured wind at low altitudes to gather data needed to enhance air taxi safety. We tested atmospheric sensors that can monitor air quality and help uncrewed aircraft avoid dangerous wind shears.

To improve fuel efficiency, our Experimental Fabrication branch built a scale model of a unique aircraft wing that will be used to gather data for future, larger versions of the design.

In an effort to advance the use of alternative fuels in today’s planes we worked with aviation partners to study particle and gas emissions from passenger aircraft engines.

With the conclusion of the X-57 Maxwell this year, research from the X-57 Maxwell provided aviation researchers with hundreds of lessons learned, as well as revolutionary developments in areas ranging from battery technology to cruise motor control design.

Our crews flew above snowstorms to investigate how they form and flew over snow-covered regions to collect data on snowmelts and how they contribute to the water supply.

We conducted low-altitude flights over major cities and marine areas to study non-vehicular sources of pollution – like personal care and home products – and their impact on air quality in North America. To advance fire and smoke models, we participated in a multi-agency effort to collect measurements of fuels, fire behavior, fire energy, meteorology, smoke, and fire effects.

On the space front, we tested highly elastic strain sensors to help parachute designers construct better, more reliable parachutes to land rovers and equipment on Mars and enabled testing of an instrument designed to measure surface particles kicked up by a rocket-powered lander on the Moon or Mars.

Armstrong advanced NASA’s commitment to engage, inspire, and attract future generations of explorers. Students saw their experiments soar as payloads from the NASA TechRise Challenge launched high into the sky.  We celebrated the 15th anniversary of our summer internship program, offering undergraduate students hands-on experience during a real airborne science campaign. Our researchers, pilots, and mission support teams traveled the country, showcasing aviation-inspired technology and the latest in NASA aeronautics research, space exploration, science, and more.

We hunted for lightning and collected data on radiation generated by thunderclouds to better predict when storms could turn severe and we paved the way to improve autonomous observation capabilities for small spacecraft flying over Earth, the Moon, or other worlds. Finally, we forged a new partnership to build, test, and fly an experimental aircraft aimed at lowering emissions.

These are just some of Armstrong’s many innovative research efforts that support NASA’s mission to explore the secrets of the universe for the benefit of all.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images NASA has selected two more university student teams to help address real-world aviation challenges, through projects aimed at using drones for hurricane relief and improved protection of air traffic systems from cyber threats. 
      The research awards were made through NASA’s University Student Research Challenge (USRC), which provides student-led teams with opportunities to contribute their novel ideas to advance NASA’s Aeronautics research priorities.   
      As part of USRC, students participate in real-world aspects of innovative aeronautics research both in and out of the laboratory.  
      “USRC continues to be a way for students to push the boundary on exploring the possibilities of tomorrow’s aviation industry.” said Steven Holz, who manages the USRC award process. “For some, this is their first opportunity to engage with NASA. For others, they may be taking their ideas from our Gateways to Blue Skies competition and bringing them closer to reality.” 
      In the case of one of the new awardees, North Carolina State University in Raleigh applied for their USRC award after refining a concept that made them a finalist in NASA’s 2024 Gateways to Blue Skies competition.  
      Each team of students selected for a USRC award receives a NASA grant up to $80,000 and is tasked with raising additional funds through student-led crowdfunding. This process helps students develop skills in entrepreneurship and public communication. 
      The new university teams and research topics are: 
      North Carolina State University in Raleigh 
      “Reconnaissance and Emergency Aircraft for Critical Hurricane Relief” will develop and deploy advanced Unmanned Aircraft Systems (UAS) designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters. 
      The team includes Tobias Hullette (team lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, and Hadie Sabbah, with faculty mentor Felix Ewere. 
      Texas A&M University, in College Station 
      “Context-Aware Cybersecurity for UAS Traffic Management” will develop, test, and pursue the implementation of an aviation-context-aware network authentication system for the holistic management of cybersecurity threats to enable future drone traffic control systems.  
      The team includes Vishwam Raval (team lead), Nick Truong, Oscar Leon, Kevin Lei, Garett Haynes, Michael Ades, Sarah Lee, and Aidan Spira, with faculty mentor Sandip Roy. 
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      9 min read ARMD Research Solicitations (Updated May 1)
      Article 2 weeks ago 4 min read Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar
      Article 3 weeks ago 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 15, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      University Student Research Challenge Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
    • By NASA
      4 Min Read Spacewalk Research and Technology
      NASA astronaut Anne McClain prepares spacesuits ahead of the May 2025 spacewalk. Credits: NASA Science in Space: May
      Crew members on the International Space Station periodically conduct spacewalks to perform a variety of tasks such as installing, upgrading, and repairing equipment. During a spacewalk on May 1, astronauts installed hardware to support the planned addition of a seventh roll-out solar array on the exterior of the space station. Each of these arrays produces more than 20 kilowatts of electricity and together they will increased power production by up to 30%, enabling more scientific operations on the orbiting lab.
      NASA astronaut Butch Wilmore collects samples from the exterior of the space station for ISS External Microorganisms.NASA Some spacewalks include operations for scientific research. On January 20, 2025, crew members collected samples for ISS External Microorganisms, an investigation examining whether microorganisms have exited through station vents and can survive in space. Results could help determine changes needed in design of spacecraft (including spacesuits) to prevent human-associated microbes from contaminating Mars and other exploration destinations.
      Radiation monitoring
      CSA astronaut Dave Williams on a spacewalk in 2007. CSA studied the radiation dose crew members experience while outside the station.NASA The CSA (Canadian Space Agency) investigation EVA Radiation Monitoring, used a miniature, power-efficient wireless radiation measurement system or dosimeter worn by crew members during spacewalks. This type of device could help identify parts of the body that are exposed to the highest radiation levels during spacewalks. Results showed that this type of device is a feasible way to monitor individual dose during spacewalks. The device also has potential uses on Earth, such as monitoring radiation exposure during cancer treatments.

      Spacesuit technology
      Spacesuits are essentially one-person spacecraft that protect their wearers from the hazards of space, including radiation and extreme temperatures. Space station research is helping improve the suits and tools for spacewalks and activities outside spacecraft and for the exploration of the Moon and Mars.
      SpaceSkin on ExHAM, a JAXA (Japan Aerospace Exploration Agency) investigation, evaluated the durability of a fabric with imbedded sensors to detect damage. Sensors integrated into the exposed outermost layer of a spacesuit could detect damage such as impacts from micrometeoroids. Researchers documented factors to consider in design of textiles with sensing capabilities as well as the ability to withstand the hazards of space. Such fabrics could be integrated into spacesuits and habitats to help protect astronauts on spacewalks and future exploration missions.
      NASA astronaut Patrick G. Forrester works with the MISSE facility.NASA Researchers use the Materials International Space Station Experiment or MISSE facility on the exterior of the space station for experiments exposing various materials and components to the harsh environment of space. Along with solar cells, electronics, and coatings, MISSE-7 tested pristine fibers from Apollo mission spacesuits and others scratched by lunar dust to examine the combined effects of abrasion and radiation damage. Researchers report that the fabrics significantly degraded, suggesting the need for ways to prevent or mitigate radiation damage to spacesuits on extended missions to the Moon.
      MISSE-9 tested spacesuit materials treated with shear-thickening fluids. These suspensions of tiny particles in a fluid react to stress by quickly changing from a liquid to a solid. The research showed that the materials maintained their mechanical performance characteristics and puncture resistance after extended exposure.
      Keeping cool also is important on a spacewalk, where temperatures can reach 250 degrees. SERFE, or Spacesuit Evaporation Rejection Flight Experiment, tested a technology using water evaporation to remove heat from a spacesuit so crew members and equipment remain at appropriate temperatures during spacewalks. A current cooling method, called sublimation, exposes small amounts of water to space, causing it to freeze and then turn into vapor that disperses, removing heat as it does so. The SERFE technology may be less susceptible to water contamination than sublimation.
      Exiting station
      The Nanoracks Bishop Airlock is attached to the Canadarm2 robotic arm as the International Space Station orbits 264 miles above the Atlantic Ocean off the coast of Brazil. Ocean off the coast of southern Brazil at the time of this photograph.NASA Crew members use specialized airlocks to exit the station for spacewalks. Airlocks also make it possible to deploy satellites and other external equipment. The Nanoracks Bishop Airlock was the first commercially owned and operated airlock installed on the space station. Its size, design, and automation enable faster and more efficient movement of materials out of and into the station, reducing the crew and robotics time needed. In addition to facilitating spacewalks, this facility could support increased commercial use of the space station and expand research capabilities.
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Space Station Technology Demonstration
      Humans In Space
      View the full article
    • By NASA
      NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown  April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.  
      NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.  
      One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
      Article 2 mins ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Composites Consortium team members gathered during May 2025 at NASA’s Langley Research Center in Virginia for a technical review of activities in the Hi-Rate Composite Aircraft Manufacturing project.NASA NASA and its partners in the Advanced Composites Consortium gathered at the agency’s Langley Research Center in Hampton, Virginia, on April 29-May 1, 2025.
      Team members from 22 organizations in the public-private partnership are collaborating to increase the production rate of composite aircraft, reduce costs, and improve performance.
      The team discussed results from the Technology Development Phase of NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project.
      The project is evaluating concepts and competing approaches at the subcomponent scale to determine technologies with the greatest impact on manufacturing rate and cost. The most promising concepts will be demonstrated on full-scale wing and fuselage components during the next four years. 
      Through collaboration and shared investment, the team is increasing the likelihood of technologies being adopted for next-generation transports, ultimately lowering costs for operators and improving the U.S. competitive advantage in the commercial aircraft industry.
      Want to Learn More About Composite Aircraft Research?
      Go to the HiCAM project page here Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 9 months ago 1 min read HiCAM 2023 Spring Review
      Article 2 years ago 1 min read HiCAM Research Team at Electroimpact
      HiCAM Research Team at Electroimpact
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 13, 2025 EditorJim BankeContactShannon Eichornshannon.eichorn@nasa.gov Related Terms
      Hi-Rate Composite Aircraft Manufacturing View the full article
    • By NASA
      Crew members are kicking off operations for several biological experiments that recently launched to the International Space Station aboard NASA’s 32nd SpaceX commercial resupply services mission. These include examining how microgravity affects production of protein by microalgae, testing a microscope to capture microbial activity, and studying genetic activity in biofilms.
      Microalgae in microgravity
      Sophie’s BioNutrients This ice cream is one of several products made with a protein powder created from Chorella microalgae by researchers for the SOPHONSTER investigation, which looks at whether the stress of microgravity affects the algae’s protein yield. Microalgae are nutrient dense and produce proteins with essential amino acids, beneficial fatty acids, B vitamins, iron, and fiber. These organisms also can be used to make fuel, cooking oil, medications, and materials. Learning more about microalgae growth and protein production in space could support development of sustainable alternatives to meat and dairy. Such alternatives could provide a food source on future space voyages and for people on Earth and be used to make biofuels and bioactive compounds in medicines.
      Microscopic motion
      Portland State University These swimming microalgae are visible thanks to the Extant Life Volumetric Imaging System or ELVIS, a fluorescent 3D imaging microscope that researchers are testing aboard the International Space Station. The investigation studies both active behaviors and genetic changes of microscopic algae and marine bacteria in response to spaceflight. ELVIS is designed to autonomously capture microscopic motion in 3D, a capability not currently available on the station. The technology could be useful for a variety of research in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms.
      Genetics of biofilms
      BioServe This preflight image shows sample chambers for the Genetic Exchange in Microgravity for Biofilm Bioremediation (GEM-B2) investigation, which examines the mechanisms of gene transfer within biofilms under microgravity conditions. Biofilms are communities of microorganisms that collect and bind to a surface. They can clog and foul water systems, often leave a residue that can cause infections, and may become resistant to antibiotics. Researchers could use results from this work to develop genetic manipulations that inhibit biofilm formation, helping to maintain crew health and safety aboard the International Space Station and on future missions.
      Learn more about microgravity research and technology development aboard the space station on this webpage.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Space Station Research Results
      NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
      View the full article
  • Check out these Videos

×
×
  • Create New...