Jump to content

Armstrong Flight Research Center: A Year in Review


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

It was an abundant year of innovation, exploration, and inspiration for NASA’s Armstrong Flight Research Center in Edwards, California. NASA Armstrong continues to demonstrate America’s leadership in aeronautics, Earth and space science, and aerospace technology. Our researchers, engineers, and mission support teams continually seek to revolutionize aviation, add to mankind’s knowledge of the universe, and contribute to the understanding and protection of Earth.

The video above shows many of our achievements, below are a few special moments.

The X-59 achieved a major milestone when the supersonic research aircraft was moved from its construction site to the flight line for ground testing. At the same time, project teams were busy preparing for the aircraft’s first and subsequent flights, while also advancing shock wave photography, trained aircrew on upgraded life support systems, prepared to test updated ground microphone stations designed to measure the X-59’s quiet sonic thump, and began getting the aircraft painted in preparation for its unveiling.

NASA’s Advanced Air Mobility mission continued to work with industry partners who are building innovative new aircraft like electric air taxis and drones. The team explored how these new designs may help travelers and cargo move between and in cities. At NASA Armstrong, we built a custom virtual-reality flight simulator to explore the air taxi ride experience. We also collected data needed to allow for new self-flying technology, to help make our communities more connected than ever before.

Because wind affects all aircraft, our researchers measured wind at low altitudes to gather data needed to enhance air taxi safety. We tested atmospheric sensors that can monitor air quality and help uncrewed aircraft avoid dangerous wind shears.

To improve fuel efficiency, our Experimental Fabrication branch built a scale model of a unique aircraft wing that will be used to gather data for future, larger versions of the design.

In an effort to advance the use of alternative fuels in today’s planes we worked with aviation partners to study particle and gas emissions from passenger aircraft engines.

With the conclusion of the X-57 Maxwell this year, research from the X-57 Maxwell provided aviation researchers with hundreds of lessons learned, as well as revolutionary developments in areas ranging from battery technology to cruise motor control design.

Our crews flew above snowstorms to investigate how they form and flew over snow-covered regions to collect data on snowmelts and how they contribute to the water supply.

We conducted low-altitude flights over major cities and marine areas to study non-vehicular sources of pollution – like personal care and home products – and their impact on air quality in North America. To advance fire and smoke models, we participated in a multi-agency effort to collect measurements of fuels, fire behavior, fire energy, meteorology, smoke, and fire effects.

On the space front, we tested highly elastic strain sensors to help parachute designers construct better, more reliable parachutes to land rovers and equipment on Mars and enabled testing of an instrument designed to measure surface particles kicked up by a rocket-powered lander on the Moon or Mars.

Armstrong advanced NASA’s commitment to engage, inspire, and attract future generations of explorers. Students saw their experiments soar as payloads from the NASA TechRise Challenge launched high into the sky.  We celebrated the 15th anniversary of our summer internship program, offering undergraduate students hands-on experience during a real airborne science campaign. Our researchers, pilots, and mission support teams traveled the country, showcasing aviation-inspired technology and the latest in NASA aeronautics research, space exploration, science, and more.

We hunted for lightning and collected data on radiation generated by thunderclouds to better predict when storms could turn severe and we paved the way to improve autonomous observation capabilities for small spacecraft flying over Earth, the Moon, or other worlds. Finally, we forged a new partnership to build, test, and fly an experimental aircraft aimed at lowering emissions.

These are just some of Armstrong’s many innovative research efforts that support NASA’s mission to explore the secrets of the universe for the benefit of all.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Marshall Research Scientist Enables Large-Scale Open Science
      Rahul Ramachandran is a senior research scientist at NASA’s Marshall Space Flight Center. NASA By Jessica Barnett 
      Most people use tools at work, whether it’s a hammer, a pencil, or a computer. Very few seek a doctorate degree in creating new tools for the job.
      Using that degree to make it easier for people around the world to access and use the vast amounts of data gathered by NASA? Well, that might just be unheard of if you didn’t know someone like Rahul Ramachandran, a senior research scientist in the Earth Science branch at NASA’s Marshall Space Flight Center.
      “My undergrad was in mechanical engineering. I wanted to do industrial engineering, so I came to the U.S. for that, but I didn’t like the field that much,” Ramachandran explained. “It was by chance somebody suggested meteorology.”
      That led him to learn about atmospheric science as well, but it was the 1990s and the technology of the time was very limiting. So, Ramachandran set out to learn more about computers and how to better analyze data.
      “The limitations effectively prompted me to get a degree in computer science,” he said. “I now had science, engineering, and computer science in my background. Then, over the years, I got more and more interested in the tools and capabilities that can help not only manage data but also how you extract knowledge from these large datasets.”
      Fast forward to today, and Ramachandran is an award-winning scientist helping to ensure the vast amounts of data collected by NASA are accessible and searchable for scientists around the world.
      “I never would have thought that I could ever get a job working at an agency like NASA,” he said. “You get to work with some of the smartest people in the world, and you get to work on really hard problems. I think that’s what makes it so intellectually stimulating.”
      Over the course of his career, he has worked on many different projects focused on scientific data management, designed frameworks for large scale scientific analysis, and developed machine learning applications. Recently, he worked with team members at IBM Research to create a geospatial AI foundation model that could turn NASA satellite data into maps of natural disasters or other environmental changes. He also established the Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA, which supports NASA’s Earth Science Data Systems Program by collaborating with other agencies and partners to boost the scientific benefits of data collected by NASA’s missions and experiments.
      Ramachandran received the 2023 Greg Leptoukh Lecture award for his accomplishments, an honor he attributes in large part to the many collaborators and mentors he’s had over the years.
      During his presentation, Ramachandran spoke about the ways in which artificial intelligence can help NASA continue to adapt and support open science.
      “We’ve seen what people can do with ChatGPT, which is built on a language foundation model, but there are AI foundation models for science that can be adapted into analyzing scientific data so we can augment what we are doing now in a much more efficient manner,” he said. “It requires a bit of a change in people’s mindset. How do we rethink our processes? How do we rethink a strategy for managing data? How will people search and analyze data information differently? All those things have to be thought of with a different perspective now.”
      Such work will have benefits not only for NASA but for those who use the data collected by the agency. Ramachandran said he recently got an email from someone in Africa who was able to use NASA’s data and the geospatial AI foundation model for detecting locust breeding grounds on the continent.
      “NASA has produced valuable science data that we make available to the community to use,” Ramachandran said. “I think the future would be that we not only provide the data, but we also provide these AI models that allow the science community to use the data effectively, whether it’s doing basic research or building applications like the locust breeding ground prediction.”
      As that future nears, Ramachandran and his team will be ready to help others in the science community find the data they need to learn and build the tools they’ll use for years to come.
      Share








      Details
      Last Updated Jun 20, 2024 Related Terms
      Open Science Explore More
      2 min read NASA’s Repository Supports Research of Commercial Astronaut Health  


      Article


      1 week ago
      4 min read NASA, IBM Research to Release New AI Model for Weather, Climate


      Article


      4 weeks ago
      4 min read AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change


      Article


      2 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 Min Read Next Generation NASA Technologies Tested in Flight
      Erin Rezich, Ian Haskin, QuynhGiao Nguyen, Jason Hill (Zero-G staff), and George Butt experience Lunar gravity while running test operations on the UBER payload. Credits: Zero-G Teams of NASA researchers put their next-generation technologies to the microgravity test in a series of parabolic flights that aim to advance innovations supporting the agency’s space exploration goals.
      These parabolic flights provide a gateway to weightlessness, allowing research teams to interact with their hardware in reduced gravity conditions for intervals of approximately 22 seconds. The flights, which ran from February to April, took place aboard Zero Gravity Corporation’s G-FORCE ONE aircraft and helped to advance several promising space technologies.

      Under the Fundamental Regolith Properties, Handling, and Water Capture (FLEET) project, researchers tested an ultrasonic blade technology in a regolith simulant at lunar and Martian gravities. On Earth, vibratory tools reduce the forces between the tool and the soil, which also lowers the reaction forces experienced by the system. Such reductions indicate the potential for mass savings for tool systems used in space. 
      This flight test aims to establish the magnitude of force reduction achieved by an ultrasonic tool on the Moon and Mars. Regolith interaction, including excavation, will be important to NASA’s resources to support long-duration lunar and Martian missions.
      This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec.
      Erin Rezich
      Project Principal Investigator
      “This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec. It was a NASA bucket list item for me to conduct a parabolic flight experiment, and it was even more special to do it for my doctoral thesis work. I’m very proud of my team and everyone’s effort to make this a reality,” said Erin Rezich, project principal investigator at NASA’s Glenn Research Center in Cleveland, Ohio. 
      The FLEET project also has a separate payload planned for a future flight test on a suborbital rocket. The Vibratory Lunar Regolith Conveyor will demonstrate a granular material (regolith) transport system to study the vertical transport of lunar regolith simulants (soil) in a vacuum under a reduced gravity environment.
      These two FLEET payloads increase the understanding of excavation behavior and how the excavated soil will be transported in a reduced gravity environment.
      QuynhGiao Nguyen takes experiment notes while Pierre-Lucas Aubin-Fournier and George Butt oversee experiment operations during a soil reset period between parabolas.Zero-G 3D Printed Technologies Take on Microgravity 

      Under the agency’s On-Demand Manufacturing of Electronics (ODME) project, researchers tested 3D printing technologies to ease the use of electronics and tools aboard the International Space Station.

      Flying its first microgravity environment test, the ODME Advanced Toolplate team evaluated a new set of substantially smaller 3D printed tools that provide more capabilities and reduce tool changeouts. The toolplate offers eight swappable toolheads so that new technologies can be integrated after it is sent up to the space station. The 3D printer component enables in-space manufacturing of electronics and sensors for structural and crew-monitoring systems and multi-material 3D printing of metals.
      “The development of these critical 3D printing technologies for microelectronics and semiconductors will advance the technology readiness of these processes and reduce the risk for planned future orbital demonstrations on the International Space Station.
      curtis hill
      ODME Project Principal Investigator
      Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA researchers tested another 3D printing technology developed under the agency’s ODME project for manufacturing flexible electronics in space. The Space Enabled Advanced Devices and Semiconductors team is developing electrohydrodynamic inkjet printer technology for semiconductor device manufacturing aboard the space station. The printer will allow for printing electronics and semiconductors with a single development cartridge, which could be updated in the future for various materials systems.
      (Left to right) Paul Deffenbaugh (Sciperio), Cadré Francis (NASA MSFC), Christopher Roberts (NASA MSFC), Connor Whitley (Sciperio), and Tanner Corby (Redwire Space Technologies) operate the On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer in zero gravity to demonstrate the potential capability of electronics manufacturing in space.Zero-G The On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer mills a Fused Deposition Modeling (FDM) printed plastic substrate surface smooth in preparation for the further printing of electronic traces. Conducting this study in zero gravity allowed for analysis of Foreign Object Debris (FOD) capture created during milling.Zero-G Left to Right: Rayne Wolfe and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA’s Flight Opportunities program supported testing various technologies in a series of parabolic flights earlier this year. These technologies are managed under NASA’s Game Changing Development program within the Space Technology Mission Directorate. Space Enabled Advanced Devices and Semiconductors technology collaborators included Intel Corp., Tokyo Electron America, the University of Wisconsin-Madison, Arizona State University, and Iowa State University. The Space Operations Mission Directorate’s In-Space Production Applications also supports this technology. Advanced Toolplate Technology collaborated with Redwire and Sciperio. The Ultrasonic Blade technology is a partnership with NASA’s Glenn Research Center in Cleveland, Ohio, and Concordia University in Montreal, Quebec, through an International Space Act Agreement.

      For more information about the Game Changing Development program, visit: nasa.gov/stmd-game-changing-development/

      For more information about the Flight Opportunities program, visit: nasa.gov/stmd-flight-opportunities/ 
      Testing In-Space Manufacturing Techs and More in Flight Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Jun 20, 2024 EditorIvry Artis Related Terms
      Game Changing Development Program Flight Opportunities Program Space Technology Mission Directorate Explore More
      3 min read NSTGRO 2024
      Article 7 days ago 3 min read NASA’s RASC-AL Competition Selects 2024 Winners  
      Article 7 days ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Game Changing Development
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Glenn Research Center
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NASA 5.2% scale, semi-span version of the High Lift Common Research Model installed in the German-Dutch Wind Tunnels – Braunschweig Low-Speed Wind Tunnel in Braunschweig, Germany on May 4, 2023. NASA NASA and its international partners are using the same generically shaped wing design to create physical and digital research models to better understand how air moves around an aircraft during takeoff and landing.
      Various organizations are doing computer modeling with computational tools and conducting wind tunnel tests using the same High Lift Common Research Model (CRM-HL), a NASA-led effort.
      This ensures the aerospace community is getting accurate answers despite any differences in testing conditions or facilities.
      What started as a voluntary partnership in 2019 has grown into the CRM-HL ecosystem with 10 partners across five countries. The team is building eight wind tunnel models, which will be tested at eight wind tunnels during the next three years.
      What we are learning today would take us 10 years to do alone. The partners are using each other’s research for the mutual benefit of all.
      Melissa Rivers
      NASA Researcher
      “What we are learning today would take us 10 years to do alone,” said Melissa Rivers, subproject manager in NASA’s Transformational Tools and Technologies project, which leads the CRM-HL research. “The partners are using each other’s research for the mutual benefit of all.”
      The team will define and assess common wind tunnel conditions in more than 14 tests across the globe.
      “Through this research, we are learning about differences that occur when we build and test several identical airplane models in multiple wind tunnels,” Rivers said.
      Researchers can use data from these wind tunnel tests to then check if the research tools using computational fluid dynamics are accurately predicting the physics of an aircraft.
      “The computer simulations and computational fluid dynamics tools are key contributions from this international partnership,” said NASA’s Mujeeb Malik, a lead researcher for the project. “The runs [tests] are critical to figuring out what we do not know and determining what we want to test.”
      The partners are developing a standard way to communicate their data so that everyone can better compare the results from their models and wind tunnel tests.
      NASA also is developing a cloud-based solution to give each partner access to the data and foster collaboration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This silent, 20-second video shows a computer simulation of air flowing over a 5.2% scale of NASA's High Lift Common Research Model wing design. The color key at lower right indicates the speed of the air.NASA Expanding Collaborations with Common Research Models
      This high lift research effort builds on the success of a previous Common Research Model effort focused on transonic speeds.
      Between 2008 and 2014, many organizations built their own versions of NASA’s model. They then tested the models in tunnels around the world.
      The transonic model helped the community better understand the physics of aircraft at cruise. The current high lift model focuses on the takeoff and landing portions of flight when the aircraft is flying slower than at cruise.
      Since there are more wind tunnels that can run low-speed tests, more partners can participate in the current collaboration.
      The partners working on the CRM-HL span five countries – United States, United Kingdom, France, Germany, and Japan and include:
      NASA German Aerospace Center National Office for Aerospace Studies and Research, the French Aerospace Lab JAXA (Japan Aerospace Exploration Agency) European Transonic Wind Tunnel Aerospace Technology Institute Boeing Kawasaki Heavy Industries QinetiQ Airbus Researchers from JAXA (Japan Aerospace Exploration Agency) visited NASA’s Langley Research Center in Hampton, Virginia on November 28, 2023, as part of their collaborations on the High Lift Common Research Model.NASA NASA and JAXA (Japan Aerospace Exploration Agency) researchers check out the 10% scale version of NASA’s High Lift Common Research Model in the 14-by-22-foot subsonic wind tunnel at NASA’s Langley Research Center in Hampton, Virginia on November 28, 2023. In the front row is JAXA’s Yosuke Sugioka, left, NASA’s Courtney Winski, and Andrea Sansica. In the middle row is NASA’s Sarah Langston, left, Melissa Rivers, and Kawasaki Heavy Industry’s Takahiro Hashioka. In the back row is JAXA’s Masataka Kohzai, left, Takahiro Uchiyama, and Mitsuhiro Murayama.NASA Researchers from the National Office for Aerospace Studies and Research (ONERA), the French aerospace lab, joined NASA and Boeing researchers on December 6, 2023, to visit the National Transonic Facility at NASA Langley Research Center in Hampton, Virginia, where the High Lift Common Research Model is mounted for upcoming wind tunnels test. In the front row is NASA’s Courtney Winski, left, Melissa Rivers, and ONERA’s Annabelle Lipinski. In the back row is ONERA’s Frederic Ternoy, left, ONERA’s Sylvain Mouton, and Boeing’s Adam Clark.NASA The inside wiring of the 5.2% scale, semi-span version of the High Lift Common Research Model taken at NASA’s Langley Research Center in Hampton, Virginia on November 22, 2023. NASA Technician Jamie Erway prepares the 5.2% scale, semi-span version of the High Lift Common Research Model for wind tunnel tests at the National Transonic Facility at NASA’s Langley Research Center in Hampton, Virginia on November 22, 2023. NASA The One NASA Boeing Team, a collaborative partnership between NASA and Boeing, meets at NASA’s Langley Research Center in Hampton, Virginia on December 13, 2023, to share information on recent research around the High Lift Common Research Model and collaborate on next steps and the path forward.NASA Informing Community Initiatives
      Data from the CRM-HL research effort also are driving NASA’s High Lift Prediction Workshop series. The series is sponsored by the Applied Aerodynamics Technical Committee of the American Institute of Aeronautics and Astronautics.
      The workshops are intended to engage the broader aviation community in these efforts and inspire researchers around the world.
      Another goal of this research is to help realize Certification by Analysis, which supports key objectives of the NASA Computational Fluid Dynamics Vision 2030 Study.
      NASA, industry, and academia developed the study to lay out a long-term plan for developing future computational capabilities and meeting software and hardware needs for computational fluid dynamics.
      The aerospace community will require these resources to efficiently makeaccurate predictions of how air moves around an aircraft. This work also informs the analysis and design of aircraft.
      Certification by Analysis would significantly reduce the amount of flight tests required for an aircraft or engine to meet the requirements for airworthiness.
      This could save aircraft development programs time and millions of dollars. It could also improve product safety and performance.
      The Federal Aviation Administration (FAA) sets the requirements for airworthiness. Companies must provide test results to show new aircraft and engines meet the regulations.
      “Before the FAA would allow this type of certification, the analysis must be as accurate as flight testing,” said Rivers.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      7 min read ARMD Solicitations
      Article 2 weeks ago 4 min read Winners Announced in Gateways to Blue Skies Aeronautics Competition
      Article 2 weeks ago 1 min read NASA TACP Team Visits with UCF Students, Faculty
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jun 15, 2024 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.gov Related Terms
      Aeronautics Flight Innovation Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
    • By European Space Agency
      Image: Moving the Ariane 6 upper part to the launch pad for first flight View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
  • Check out these Videos

×
×
  • Create New...