Jump to content

NASA Stennis Continues Preparations for Future Artemis Testing


NASA

Recommended Posts

  • Publishers

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Crews at NASA’s Stennis Space Center cleared a milestone Dec. 11, installing a key component in preparation for future Green Run testing of NASA’s new Exploration Upper Stage (EUS) vehicle for use on the SLS (Space Launch System) rocket.

Four large diffusers, each weighing 14 tons, were lifted by crane for installation on the Thad Cochran Test Stand (B-2). The diffusers are a critical component designed to help direct engine exhaust away from the EUS during hot fire testing to minimize heat exposure to sensitive vehicle systems.

Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin
Installation of a key component of NASA’s new Exploration Upper Stage (EUS) vehicle
NASA Stennis teams lift and install large diffusers onto the Thad Cochran Test Stand (B-2).
NASA/Danny Nowlin

NASA’s new EUS is being built at NASA’s Michoud Assembly Facility in New Orleans as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space as NASA continues its mission to explore the secrets of the universe for the benefit of all. The EUS is expected to fly on the Artemis IV mission following a series of Green Run tests of its integrated systems at NASA Stennis to demonstrate it is ready to fly. The test series will culminate with a hot fire of the four RL10 engines that will power the EUS.

NASA Stennis teams lifted and installed large diffusers onto the Thad Cochran Test Stand (B-2) on December 11, 2023, in preparation for future Green Run testing of the new Exploration Upper Stage before it flies on the SLS (Space Launch System) rocket as part of NASA’s Artemis missions to the Moon and beyond.

During an actual flight, critical EUS systems will be protected by the SLS interstage. To protect the systems during Green Run testing, teams are using an interstage simulator, a size-and-weight replica of the actual SLS interstage, and the connected diffusers.

The system requires a high level of precision. The diffusers will be connected to the EUS engine nozzles using a flexible seal so gimbaling, or moving a rocket engine a few degrees along a tight circular axis to direct the thrust and “steer” the vehicle, can occur during testing. They also are designed to facilitate propellant connections and allow test teams access to the engine area as needed.

The carbon steel diffusers were precisely designed by a joint NASA Stennis and Jacobs Engineering team, using computational models, subscale testing, and historical data. The units then were made by Custom Steel Fabricators in Columbia, Tennessee, and delivered by truck to NASA Stennis.

Following lift and installation on the test stand, the diffuser system will be connected to the facility water and hydraulic supplies. A final checkout of the system will include a full test stand water flow demonstration.

Share

Details

Last Updated
Dec 13, 2023
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, to participate in the agency’s annual Student Launch competition April 13. Credits: NASA/Charles Beason Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, amateur rockets on April 13, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the agency’s annual Student Launch competition.
      Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission.
      “These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page.
      Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      The complete list of award winners are as follows:
      2024 Overall Winners
      First place: University of Notre Dame, Indiana Second place: Iowa State University, Ames Third place: University of North Carolina at Charlotte 3D Printing Award:
      College Level:
      First place: University of Tennessee Chattanooga Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Altitude Award
      College Level:
      First place: Iowa State University, Ames Middle/High School Level:
      First place: Morris County 4-H, Califon, New Jersey Best-Looking Rocket Award:
      College Level:
      First place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles American Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award:
      College Level:
      First place: University of Colorado Boulder Second place: Vanderbilt University, Nashville, Tennessee Third place: Carnegie Mellon, Pittsburgh, Pennsylvania Judge’s Choice Award:
      Middle/High School Level:
      First place: Cedar Falls High School, Cedar Falls, Iowa Second place: Young Engineers in Action, LaPalma, California Third place: First Baptist Church of Manchester, Manchester, Connecticut Project Review Award:
      College Level:
      First place: University of Florida, Gainesville AIAA Reusable Launch Vehicle Award:
      College Level:
      First place: University of Florida, Gainesville Second place: University of North Carolina at Charlotte Third place: University of Notre Dame, Indiana AIAA Rookie Award:
      College Level:
      First place: University of Colorado Boulder Safety Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of Florida, Gainesville Third place: University of North Carolina at Charlotte Social Media Award:
      College Level:
      First place: University of Colorado Boulder Middle/High School Level:
      First place: Newark Memorial High School, Newark, California STEM Engagement Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of North Carolina at Charlotte Third place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia Service Academy Award:
      First place: United States Air Force Academy, USAF Academy, Colorado
      Vehicle Design Award:
      Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Second place: Explorer Post 1010, Rockville, Maryland Third place: Plantation High School, Plantation, Florida Payload Design Award:
      Middle/High School Level:
      First place: Young Engineers in Action, LaPalma, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Spring Grove Area High School, Spring Grove, Pennsylvania Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
      For more information about Student Launch, visit:
      https://www.nasa.gov/stem/studentlaunch/home/index.html
      For more information about other NASA challenges, please visit:
      https://stem.nasa.gov/artemis/
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034 
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 1 day ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 1 day ago 25 min read The Marshall Star for June 12, 2024
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut and Expedition 64 Flight Engineer Victor Glover reviews procedures on a computer for the Monoclonal Antibodies Protein Crystal Growth (PCG) experiment inside the Harmony module. Each year, Black Space Week celebrates the achievements of Black Americans in space-related fields.
      To kick-off Black Space Week 2024, NASA is collaborating with the National Space Council for the Beyond the Color Lines: From Science Fiction to Science Fact forum on Monday, June 17, at 11:30 a.m. EDT at the National Museum of African American History and Culture in Washington.
      Participants include Mr. Chirag Parikh, Deputy Assistant to the President and Executive Director, National Space Council; Dr. Quincy Brown, Director of Space STEM and Workforce Policy, White House National Space Council; and other private-sector and government agency leadership. 
      Current and former NASA astronauts will join the Standing on the Shoulders of Giants panel to discuss the past, present, and future of space exploration. The panel will be moderated by the Honorable Charles F. Bolden Jr.\, former administrator of NASA and a former astronaut who flew on four Space Shuttle missions. Participants include:
      Victor J. Glover, Jr., NASA Astronaut and U.S. Navy Captain Jessica Watkins, NASA Astronaut Yvonne Cagle, NASA Astronaut Leland Melvin, former NASA Astronaut Joan Higginbotham, former NASA Astronaut Additional panels include HERStory, sharing the untold stories of Black women leaders in space, STEM, arts, diplomacy, and business, and a discussion with young leaders, educators, and scientists about education and career paths for the future of space.
      Additional event details, including registration and streaming information, can be found at nmaahc.si.edu.
      View the full article
    • By NASA
      Representatives from NASA, FEMA, and the planetary defense community participate in the fifth Planetary Defense Interagency Tabletop Exercise on April 2 and 3, 2024, to discuss the nation’s ability to respond effectively to the threat of a potentially hazardous asteroid or comet.Credits: NASA/JHU-APL/Ed Whitman NASA will host a virtual media briefing at 3:30 p.m. EDT, Thursday, June 20, to discuss a new summary of a recent tabletop exercise to simulate national and international responses to a hypothetical asteroid impact threat.
      The fifth biennial Planetary Defense Interagency Tabletop Exercise was held April 2 and 3, 2024, at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.
      NASA’s Planetary Defense Coordination Office, in partnership with FEMA (Federal Emergency Management Agency) and with the assistance of the U.S. Department of State Office of Space Affairs, convened the tabletop exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet. This exercise supports NASA’s planetary defense strategy to protect our planet and continues the agency’s mission to innovate for the benefit of humanity.
      Video of the briefing will stream live on NASA TV and NASA’s YouTube channel.
      The following participants will review the history and purpose of the exercise, the scenario encountered during this year’s simulation, and its findings and recommendations:
      Lindley Johnson, NASA’s Planetary Defense Officer Emeritus, NASA Headquarters, Washington Leviticus “L.A.” Lewis, FEMA detailee to NASA’s Planetary Defense Coordination Office, NASA Headquarters Terik Daly, planetary defense section supervisor, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland To register for the briefing, media must RSVP no later than two hours before the event to Alise Fisher at alise.m.fisher@nasa.gov. NASA’s media accreditation policy is available online.
      While there are no known significant asteroid impact threats for the foreseeable future, hypothetical exercises like this one, which are conducted about every two years, provide valuable insights on how the United States could respond effectively if a potential asteroid impact threat is identified.
      This year’s exercise was the first to include participation by NASA’s international collaborators in planetary defense and the first to have the benefit of actual data from NASA’s successful DART (Double Asteroid Redirection Test) mission, the world’s first in-space technology demonstration for defending Earth against potential asteroid impacts.
      NASA established the Planetary Defense Coordination Office in 2016 to manage the agency’s ongoing efforts in planetary defense.
      To learn more about planetary defense at NASA, visit: 
      https://science.nasa.gov/planetary-defense/
      -end-
      Charles Blue / Karen Fox
      Headquarters, Washington 
      202-802-5345 / 202-358-1600
      charles.e.blue@nasa.gov / karen.fox@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 LocationNASA Headquarters Related Terms
      Planetary Defense Coordination Office Planetary Defense Planetary Science Division Science & Research Science Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions.  
      The campaign supports the NASA Student Airborne Research Program for undergraduate interns.
      Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta) The East Coast flights will take place from June 17-26. Researchers and students will fly multiple times each week in Dynamic Aviation’s King Air B200 aircraft at an altitude of 1,000 feet over Baltimore and Philadelphia as well as Norfolk, Hampton, Hopewell, and Richmond in Virginia. Meanwhile, a NASA P-3 aircraft based out of NASA’s Wallops Flight Facility in Virginia will fly over the same East Coast locations to collect different measurements.
      The West Coast flights will occur from June 29 – July 2. During the period, those same aircraft will conduct similar operations over Los Angeles, Imperial Valley, and Tulare Basin in California.
      The research aircraft will fly at lower altitudes than most commercial planes and will conduct maneuvers including vertical spirals from 1,000 to 10,000 feet, circling over power plants, landfills, and urban areas. They will also occasionally conduct “missed approaches” at local airports, where the aircraft will perform a low-level flyby over a runway to collect samples close to the surface.
      The aircraft carry instruments that will collect data on a range of greenhouse gases including carbon dioxide and methane, as well as air pollutants such as nitrogen dioxide, formaldehyde, and ozone. One purpose of this campaign is to validate space-based measurements observed by the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. Launched on a commercial satellite in April 2023, the TEMPO instrument provides hourly daytime measurements of air pollutants across the United States, northern Mexico, and southern Canada.
      “The goal is that this data we collect will feed into policy decisions that affect air quality and climate in the region,” said Glenn Wolfe, a research scientist and the principal investigator for the campaign at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The B-200 aircraft is owned by Dynamics Aviation, an aircraft company contracted by NASA.
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Tayler Gilmore
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jun 14, 2024 EditorJennifer R. MarderContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Tropospheric Emissions: Monitoring of Pollution (TEMPO) Wallops Flight Facility Explore More
      5 min read Surf, Turf, Above Earth: Students Participate in NASA Field Research
      Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists,…
      Article 10 months ago 10 min read A Tale of Three Pollutants
      Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A…
      Article 8 months ago 4 min read NASA Scientists Take to the Seas to Study Air Quality
      Article 1 week ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
  • Check out these Videos

×
×
  • Create New...