Jump to content

NASA’s Commercial Partners Continue Progress on New Space Stations


Recommended Posts

  • Publishers
Posted

Three NASA-funded commercial space station partners are on track for the design and development of their orbital destinations and the transition of agency’s low Earth orbit needs from the International Space Station.

“We are ending the year on a high note with multiple important milestones being completed by our partners,” said Angela Hart, manager of the Commercial Low Earth Orbit Development Program at NASA Johnson Space Center in Houston. “Over the past few months, we have been able to dig into the details of the specific hardware and processes of these stations and are moving forward to multiple comprehensive design reviews next year.”

Axiom Space

axiom-hatch.jpg?w=1950
A hatch of the Axiom Hab One module, which will attach the module to the International Space Station.
Axiom Space

Axiom Space, which holds a firm-fixed price, indefinite-delivery, indefinite-quantity contract with NASA, is on schedule to launch and attach its first module, named Axiom Hab One, to the International Space Station in 2026. A total of four modules are planned for the Axiom Commercial Segment attached to the station. After the space station’s retirement, the Axiom Commercial Segment will separate and become a free-flying commercial destination named Axiom Station.

The hatches of the Axiom Hab One module are fabricated and prepared to undergo pressure testing to ensure a strong enough seal to withstand the vacuum of space. Manufacturing of the Axiom Hab One module is underway, and the critical design review will occur in 2024. During this review, NASA will assess the maturity of the Axiom Space design and provide feedback necessary to ensure safe operations when it is attached to the International Space Station.

Orbital Reef

blue-social-photo-orbital-reef.jpg?w=743
NASA engineers work alongside Blue Origin team members to conduct testing on prototype windows for the Orbital Reef commercial space station.
Blue Origin

Blue Origin, which NASA awarded a Space Act Agreement in 2021 to develop a free-flying space station named Orbital Reef, recently completed tests for a window system and a structural demonstration.

For the structural test, Blue Origin used a prototype of their space station’s main module, called the Core, to demonstrate the manufacturing processes required to build the final pressurized modules of the station. The test supports validation of the structural models and analytical tools for the Core’s structural design.

The International Space Station’s cupola, a room with seven windows overlooking the Earth, is the cornerstone of crewed missions for both research and astronaut morale. Orbital Reef will incorporate multiple windows on its Core, with each window spanning about twice the size of a car windshield. For the window test, Blue Origin evaluated the window integration structure design concept and its performance against the pressures and temperatures the windows will be exposed to while in orbit.

Starlab

tumblr-inline-ntljncskoz1tumwls-1280.jpg
A test unit of a water recovery system used on board the International Space Station in 2015 that helped transform urine from crew members into usable water.
NASA

NASA also awarded Starlab, a station being developed by Voyager Space’s Exploration Segment, a Space Act Agreement in 2021. Voyager Space recently announced a partnership with Airbus and Northrop Grumman. Voyager’s Exploration Segment, which includes Nanoracks, recently completed three milestones: a system definition review and the initiation of two pairs of milestones for an optical link demonstration and alternative urine processor demonstration.

Free-space optical, also called laser communications, allows for higher data rates and more energy-efficient communications than radio frequency communication systems. A major goal of the optical communication demonstration is to conduct testing from the International Space Station to the ground to establish the capabilities needed for Starlab. This initial milestone, within the optical link demonstration milestone pair scope, validated the Starlab testing plan. The optical link is planning to be tested next on the International Space Station.

As on the International Space Station, Starlab will recover purified water from urine to reduce water needed to resupply the station. Starlab will test an alternative urine processor under realistic operating conditions to validate functional performance and reduce implementation risk. Similar to the optical link demonstration, the processor demonstration is divided into a pair of milestones, with this initial completed milestone validating the testing plan.

Starlab’s third recently completed milestone was a system definition review. Teams examined how NASA’s potential commercial space station requirements aligned to the functional areas of the Starlab system to define the space station architecture. The completion of this milestone initiated preparations for the next step in the comprehensive review process, the preliminary design review.

NASA is working closely with commercial companies to develop new space stations capable of providing services to NASA and others, which will ensure that the U.S. maintains a continuous human presence in low Earth orbit and provides direct benefits for people on Earth. Leading into NASA’s future procurement for commercial low Earth orbit services, the agency recently released its third request for information.

For more information about NASA’s commercial space strategy, visit:

https://www.nasa.gov/humans-in-space/commercial-space/

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Rebecca Turkington
Johnson Space Center, Houston
281-483-5111
rebecca.turkington@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Vision Changes on Space Station
      NASA astronaut Jonny Kim, assisted by JAXA astronaut Takuya Onishi, performs an eye ultrasound on the International Space Station. Credits: NASA Science in Space July 2025
      When astronauts began spending six months and more aboard the International Space Station, they started to notice changes in their vision. For example, many found that, as their mission progressed, they needed stronger reading glasses. Researchers studying this phenomenon identified swelling in the optic disc, which is where the optic nerve enters the retina, and flattening of the eye shape. These symptoms became known as Space-Associated Neuro-Ocular Syndrome (SANS).
      NASA astronaut Suni Williams wears a cuff on her left leg as she conducts an eye exam for the Thigh Cuff investigation.NASA Microgravity causes a person’s blood and cerebrospinal fluid to shift toward the head and studies have suggested that these fluid shifts may be an underlying cause of SANS. A current investigation, Thigh Cuff, examines whether tight leg cuffs change the way fluid moves around inside the body, especially around the eyes and in the heart and blood vessels. If so, the cuffs could serve as a countermeasure against the problems associated with fluid shifts, including SANS. A simple and easy-to-use tool to counter the headward shift of body fluids could help protect astronauts on future missions to the Moon and Mars. The cuffs also could treat conditions on Earth that cause fluid to build up in the head or upper body, such as long-term bed rest and certain diseases.
      Following fluid shifts
      NASA astronaut Shane Kimbrough sets up optical coherence tomography hardware.NASA The Fluid Shifts investigation, conducted from 2015 through 2020, was the first to reveal changes in how blood drains from the brain in microgravity. Vision Impairment and Intracranial Pressure (VIIP) began testing the role those fluid shifts and resulting increased brain fluid pressure might play in the development of SANS. This research used a variety of measures including clinical eye exams with and without dilatation, imaging of the retina and associated blood vessels and nerves, noninvasive imaging to measure the thickness of retinal structures, and magnetic resonance imaging of the eye and optic nerve. In addition, approximately 300 astronauts completed questionnaires to document vision changes during their missions.
      In one paper published from the research, scientists described how these imaging techniques have improved the understanding of SANS. The authors summarized emerging research on developing a head-mounted virtual reality display that can conduct multimodal, noninvasive assessment to help diagnose SANS.
      Other researchers determined that measuring the optic nerve sheath diameter shows promise as a way to identify and quantify eye and vision changes during spaceflight. The paper also makes recommendations for standardizing imaging tools, measurement techniques, and other aspects of study design.
      Another paper reported on an individual astronaut who had more severe than usual changes after a six-month spaceflight and certain factors that may have contributed. Researchers also observed improvement in the individual’s symptoms that may have been due to B vitamin supplementation and lower cabin carbon dioxide levels following departure of some crew members. While a single case does not allow researchers to determine cause and effect, the magnitude of the improvements suggest this individual may be more affected by environmental conditions such as carbon dioxide. This may have been the first attempt to mitigate SANS with inflight B vitamin supplementation.
      Eyeball tissue stiffness
      Optical coherence tomography image of the back of the eyeball (top) and thickness of the middle wall of the eye (bottom) from the SANSORI investigation.University of Montreal SANSORI, a CSA (Canadian Space Agency) investigation, used an imaging technique called Optical Coherence Tomography to examine whether reduced stiffness of eye tissue contributes to SANS. On Earth, changes in stiffness of the tissue around the eyeball have been associated with aging and conditions such as glaucoma and myopia. Researchers found that long-duration spaceflight affected the mechanical properties of eye tissues, which could contribute to the development of SANS. This finding could improve understanding of eye changes during spaceflight and in aging patients on Earth.
      Genetic changes, artificial gravity
      The MHU-8 investigation from JAXA (Japan Aerospace Exploration Agency), which examined changes in DNA and gene expression in mice after spaceflight, found changes in the optic nerve and retinal tissue. Researchers also found that artificial gravity may reduce these changes and could serve as a countermeasure on future missions.
      These and other studies ultimately could help researchers prevent, diagnose, and treat vision impairment in crew members and people on Earth.
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Latest News from Space Station Research
      Space Station Research and Technology Tools and Information
      Space Station Research Results
      View the full article
    • By European Space Agency
      When the European Space Agency’s Jupiter Icy Moons Explorer (Juice) flew past our Moon in August 2024, its Radar for Icy Moon Exploration (RIME) instrument listened to radio wave echoes to reveal the height of the lunar surface.
      View the full article
    • By European Space Agency
      Image: This image from Copernicus Sentinel-1 shows circular agricultural structures near Tabarjal, in the barren desert of northern Saudi Arabia. View the full article
    • By NASA
      NASA/Jonny Kim In this June 13, 2025, photo, NASA astronaut Anne McClain shows off a hamburger-shaped cake to celebrate 200 cumulative days in space for JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi since his first spaceflight as an Expedition 48-49 Flight Engineer in 2016.
      Onishi and McClain launched to the International Space Station along with NASA astronaut Nichole Ayers and Roscosmos cosmonaut Kirill Peskov on March 14, 2025, as part of the Crew-10 mission. Aboard the orbital laboratory, the Crew-10 members conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. McClain and Ayers also performed a spacewalk on May 1, 2025 – McClain’s third and Ayers’ first.
      Check out the International Space Station blog to follow the crew’s research and other activities.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A team works together on their project during the 2024 NASA Space Apps Challenge event in in Arequipa, Peru. Teams have two days to respond to the challenges and submit their project for the chance to win one of 10 global awards. NASA invites innovators of all ages to register for the NASA Space Apps Challenge, held on Oct. 4-5. The 2025 theme is Learn, Launch, Lead, and participants will work alongside a vibrant community of scientists, technologists, and storytellers at more than 450 events worldwide. Participants can expect to learn skills to succeed in STEM fields, launch ideas that transform NASA’s open data into actionable tools, and lead their communities in driving technological innovation.
       
      During the NASA Space Apps Challenge, participants in the U.S. and around the world gather at hundreds of in-person and virtual events to address challenges authored by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating machine learning models and leveraging artificial intelligence, to improving access to NASA research, to designing sustainable recycling systems for Mars, and to developing tools to evaluate local air quality here on Earth.
       
      Dr. Yoseline Angel Lopez, a former space apps challenge winner and now an assistant research scientist at NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, can attest that the opportunity to Learn, Launch, Lead goes far beyond the hackathon.   
       
      “The NASA Space Apps Challenge gave me and my team a meaningful opportunity to apply science to real-world problems and gain validation from NASA scientists and industry experts,” said Angel.
       
      In 2021, her team’s winning web-app prototype was adopted by Colombia’s Ministry of Agriculture, connecting smallholder farmers with local buyers. The platform also supported agricultural land-use monitoring using satellite imagery.
       
      After the hackathon, project submissions are judged by NASA and space agency experts. Winners are selected for one of 10 global awards.
       
      “Participating in the hackathon is exciting on its own. But when your project can lead to greater opportunities and make a difference in your community, that’s a dream come true,” said Angel. She will return to the 2025 hackathon as a NASA subject matter expert and challenge author, giving a Golden Age of innovators the opportunity to make a difference in their communities through the use of data from NASA and 14 space agency partners.
       
      This year’s partners include: Bahrain Space Agency; Brazilian Space Agency; CSA (Canadian Space Agency); ESA (European Space Agency); ISRO (Indian Space Research Organisation); Italian Space Agency; JAXA (Japan Aerospace Exploration Agency); Mohammed Bin Rashid Space Centre of the United Arab Emirates; National Space Activities Commission of Argentina;  Paraguayan Space Agency; South African National Space Agency; Spanish Space Agency; Turkish Space Agency; and the UK Space Agency.
       
      NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
       
      We invite you to register for the 2025 NASA Space Apps Challenge and choose a virtual or in-person event near you at:

      https://www.spaceappschallenge.org
      Find videos about Space Apps at:
      youtube.com/c/NASASpaceAppsChallenge
      Social Media
      Stay up to date with #SpaceApps by following these accounts:
      Facebook logo @spaceappschallenge @SpaceApps Instagram logo @nasa_spaceapps Share
      Details
      Last Updated Jul 17, 2025 Related Terms
      Prizes, Challenges, and Crowdsourcing Program Earth Earth Science Division General Get Involved Learning Resources Explore More
      6 min read NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members
      Article 7 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
      Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
      Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...