Jump to content

NASA MSI Incubator: Wildfire Climate Tech Challenge


NASA

Recommended Posts

  • Publishers
wildfire-nasa-jpl-credit-usfs-mike-mcmil

NASA’s Wildfire Climate Tech Challenge, part of the MSI Incubator initiative, seeks innovative solutions for wildfire prevention and climate technology. NASA invites students and employees of Minority Serving Institutions (MSIs) to address the escalating issues caused by wildfires exacerbated by climate change. Successful participants will have the opportunity to join a startup incubator program and compete for a prize of $100,000. Additionally, this initiative offers a platform for participants to present their ideas to venture capitalists and NASA experts, furthering the development of technology in the fields of wildfire prevention and climate change, while promoting inclusivity and diversity.

Award: $300,000 in total prizes

Open Date: December 11, 2023

Close Date: February 2, 2024

For more information, visit: https://www.nasa-climate-tech.org/wildfires/home

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is readying for the launch of several small satellites to space, built with the help of students, educators, and researchers from across the country, as part of the agency’s CubeSat Launch Initiative.
      The ELaNa 43 (Educational Launch of Nanosatellites 43) mission includes eight CubeSats flying on Firefly Aerospace’s Alpha rocket for its “Noise of Summer” launch from Space Launch Complex-2 at Vandenberg Space Force Base, California. The 30-minute launch window will open at 9 p.m. PDT Wednesday, June 26 (12 a.m. EDT Thursday, June 27).
      NASA’s CubeSat Launch Initiative (CSLI) is an ongoing partnership between the agency, educational institutions, and nonprofits, providing a path to space for educational small satellite missions. For the ELaNa 43 mission, each satellite is stored in a CubeSat dispenser on the Firefly rocket and deployed once it reaches sun-synchronous or nearly polar orbit around Earth.
      CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. This standardization in size and form allows universities and other researchers to develop cost-effective science investigations and technology demonstrations.
      Read more about the small satellites launching on ELaNa 43:
      CatSat – University of Arizona, Tucson
      CatSat, a 6U CubeSat with a deployable antenna inside a Mylar balloon, will test high-speed communications. Once the CatSat reaches orbit, it will inflate to transmit high-definition Earth photos to ground stations at 50 megabits per second, more than five times faster than typical home internet speeds.
      The CatSat design inspiration came to Chris Walker after covering a pot of pudding with plastic wrap. The CatSat principal investigator and professor of Astronomy at University of Arizona noticed the image of an overhanging light bulb created by reflections off the concave plastic wrap on the pot.
      “This observation eventually led to the Large Balloon Reflector, an inflatable technology that creates large collecting apertures that weigh a fraction of today’s deployable antennas,” said Walker. The Large Balloon Reflector was an early-stage study developed through NASA’s Innovative Advanced Concepts program.
      KUbeSat-1 – University of Kansas, Lawrence
      The KUbeSat-1, a 3U CubeSat, will use a new method to measure the energy and type of primary cosmic rays hitting the Earth, which is traditionally done on Earth. The second payload, the High-Altitude Calibration will measure very high frequency signals generated by cosmic interactions with the atmosphere. KUbeSat-1 is Kansas’ first small satellite to launch under NASA’s CSLI.
      MESAT-1 – University of Maine, Orono
      MESAT-1, a 3U CubeSat, will study local temperatures across city and rural areas to determine phytoplankton concentration in bodies of water to help predict algal blooms.  MESAT-1 is Maine’s first small satellite to launch under NASA’s CSLI.
      R5-S4, R5-S2-2.0 ­­­­­- NASA’s Johnson Space Center
      R5-S4 and R5-S2-2.0, both 6U CubeSats, will be the first R5 spacecraft launched to orbit to test a new, lean spacecraft build. The team will monitor how each part of the spacecraft performs, including the computer, software, radio, propulsion system, sensors, and cameras in low Earth orbit.
      NASA and Firefly Aerospace engineers review the integration plan for the agency’s CubeSat R5 Spacecraft 4 (R5-S4) at Firefly Aerospace’s Payload Processing Facility at Vandenberg Space Force Base, California on Wednesday, April 24, 2024.NASA/Jacob Nunez-Kearny “In the near term, R5 hopes to demonstrate new processes that allows for faster and cheaper development of high-performance CubeSats,” said Sam Pedrotty, R5 project manager at NASA’s Johnson Space Center in Houston. “The cost and schedule improvements will allow R5 to provide higher-risk ride options to low-Technology Readiness Levels payloads so more can be demonstrated on-orbit.”
      Serenity – Teachers in Space
      Serenity, a 3U CubeSat equipped with data sensors and a camera, will communicate with students on Earth through amateur radio signals and send back images. Teachers in Space launches satellites as educational experiments to stimulate interest in space science, technology, engineering, and math among students in North America.
      SOC-i – University of Washington, Seattle
      Satellite for Optimal Control and Imaging (SOC-i), a 2U CubeSat, is a technology demonstration mission of attitude control technology used to maintain its orientation in relation to the Earth, Sun, or other body. This mission will test an algorithm to support autonomous operations with constrained attitude guidance maneuvers computed in real-time aboard the spacecraft. SOC-i will autonomously rotate its camera to capture images.
      TechEdSat-11 (TES-11) – NASA’s Ames Research Center, California’s Silicon Valley
      TES-11, a 6U CubeSat, is a collaborative effort between NASA researchers and students to evaluate technologies for use in small satellites. It’s part of ongoing experiments to evaluate new technologies in communications, a radiation sensor suite, and experimental solar panels, as well as to find ways to reduce the time to de-orbit.
      NASA awarded Firefly Aerospace a fixed-price contract to fly small satellites to space under a Venture-Class Launch Services Demonstration 2 contract in 2020. NASA certified Firefly Aerospace’s Alpha rocket as a Category 1 in May, which authorized its use during missions with high risk tolerance.
      NASA’s Launch Services Program is responsible for launching rockets delivering spacecraft that observe Earth, visit other planets, and explore the universe.
      Follow NASA’s small satellite missions blog for launch updates.
      View the full article
    • By NASA
      Artist’s concept of the Earth drawn from data from multiple satellite missions and created by a team of NASA scientists and graphic artists. Credit: NASA Images By Reto Stöckli, Based On Data From NASA And NOAA NASA joined more than 20 federal agencies in releasing its updated Climate Adaptation Plan Thursday, helping expand the Biden-Harris Administration’s efforts to make federal operations increasingly resilient to the impacts of climate change for the benefit of all.
      The updated plans advance the administration’s National Climate Resilience Framework, which helps align climate resilience investments across the public and private sectors through common principles and opportunities.
      “Thanks to the leadership of the Biden-Harris Administration, we are strengthening climate resilience to ensure humanity is well-prepared for the effects of climate change,” said NASA Administrator Bill Nelson. “NASA’s decades of Earth observation are key to building climate resiliency and sustainability across the country and the world.”
      NASA serves as a global leader in Earth science, providing researchers with crucial data from its satellites and other assets, as well as other observations and research on the climate system. The agency also works to apply that knowledge and inform the public about climate change. NASA will continue to prioritize these efforts and maintain an open information policy that makes its science data, software, and research freely available to all.
      Climate variability and change also have potential impacts on NASA’s ability to fulfill its mission, requiring proactive planning and action from the agency. To ensure coastal flooding, extreme weather events, and other climate change impacts do not stop the agency’s work, NASA is improving its climate hazard analyses and developing plans to protect key resources and facilities.  
      “As communities face extreme heat, natural disasters and severe weather from the impacts of climate change, President Biden is delivering record resources to build climate resilience across the country,” said Brenda Mallory, chair of the White House Council on Environmental Quality. “Through his Investing in America agenda and an all-of-government approach to tackling the climate crisis, the Biden-Harris Administration is delivering more than $50 billion to help communities increase their resilience and bolster protections for those who need it most. By updating our own adaptation strategies, the federal government is leading by example to build a more resilient future for all.”
      At the beginning of his administration, President Biden tasked federal agencies with leading whole-of-government efforts to address climate change through Executive Order 14008, Tackling the Climate Crisis at Home and Abroad. Following the magnitude of challenges posed by the climate crisis underscored last year when the nation endured a record 28 individual billion-dollar extreme weather and climate disasters that caused more than $90 billion in aggregate damage, NASA continues to be a leader and partner in adaptation and resilience.
      NASA released its initial Climate Adaptation Plan in 2021 and progress reports outlining advancements toward achieving their adaptation goals in 2022. In coordination with the White House Council on Environmental Quality and the Office of Management and Budget, agencies updated their Climate Adaptation Plans for 2024 to 2027 to better integrate climate risk across their mission, operations, and asset management, including:
      Combining historical data and projections to assess exposure of assets to climate-related hazards including extreme heat and precipitation, sea level rise, flooding, and wildfire. Expanding the operational focus on managing climate risk to facilities and supply chains to include federal employees and federal lands and waters. Broadening the mission focus to describe mainstreaming adaptation into agency policies, programs, planning, budget formulation, and external funding. Linking climate adaptation actions with other Biden-Harris Administration priorities, including advancing environmental justice and the President’s Justice40 Initiative, strengthening engagement with Tribal Nations, supporting the America the Beautiful initiative, scaling up nature-based solutions, and addressing the causes of climate change through climate mitigation. Adopting common progress indicators across agencies to assess the progress of agency climate adaptation efforts. All plans from each of the more than 20 agencies and more information are available online.
      To learn more about Earth science research at NASA, visit:
      https://science.nasa.gov/earth-science//
      -end-
      Rob Margetta
      Headquarters, Washington 
      202-358-0918
      robert.j.margetta@nasa.gov
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Downtown Huntsville Inc. Media are invited to attend a celebration of space and the Rocket City during NASA in the Park on Saturday, June 22, 10 a.m. to 2 p.m. CDT at Big Spring Park East in Huntsville, Alabama.
      NASA and partners will pack the park with exhibits, music, food vendors, and hands-on activities for all ages. This event is free and open to the public.
      Joseph Pelfrey, director of NASA’s Marshall Space Flight Center, and local leaders will kick off the program of activities at 10:15 a.m. at the central stage on the south side of the park.
      Pelfrey and other NASA team members will be available to speak with reporters between 10:30 and 11 a.m. near the stage.
      Reporters interested in interviews should contact Molly Porter, molly.a.porter@nasa.gov or 256-424-5158.
      For more information about Marshall, visit:
      https://www.nasa.gov/marshall
      Molly Porter
      Marshall Space Flight Center
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Jun 20, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      20 min read The Marshall Star for June 18, 2024
      Article 2 days ago 4 min read NASA Announces Winners of 2024 Student Launch Competition
      Article 6 days ago 4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover viewed these dust devils swirling across the surface of Mars on July 20, 2021. Scientists want to study the air trapped in samples being collected in metal tubes by Perseverance. Those air samples could help them better understand the Martian atmosphere.NASA/JPL-Caltech Tucked away with each rock and soil sample collected by the agency’s Perseverance rover is a potential boon for atmospheric scientists.
      Atmospheric scientists get a little more excited with every rock core NASA’s Perseverance Mars rover seals in its titanium sample tubes, which are being gathered for eventual delivery to Earth as part of the Mars Sample Return campaign. Twenty-four have been taken so far.
      Most of those samples consist of rock cores or regolith (broken rock and dust) that might reveal important information about the history of the planet and whether microbial life was present billions of years ago. But some scientists are just as thrilled at the prospect of studying the “headspace,” or air in the extra room around the rocky material, in the tubes.
      This image shows a rock core about the size of a piece of chalk in a sample tube housed within the drill of NASA’s Perseverance Mars rover. Once the rover seals the tube, air will be trapped in the extra space in the tube — seen here in the small gap (called “headspace”) above the rock. NASA/JPL-Caltech/ASU/MSSS A sealed tube containing a sample of the Martian surface collected by NASA’s Perseverance Mars rover is seen here, after being deposited with other tubes in a “sample depot.” Other filled sample tubes are stored within the rover.NASA/JPL-Caltech They want to learn more about the Martian atmosphere, which is composed mostly of carbon dioxide but could also include trace amounts of other gases that may have been around since the planet’s formation.
      “The air samples from Mars would tell us not just about the current climate and atmosphere, but how it’s changed over time,” said Brandi Carrier, a planetary scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It will help us understand how climates different from our own evolve.”
      The Value of Headspace
      Among the samples that could be brought to Earth is one tube filled solely with gas deposited on the Martian surface as part of a sample depot. But far more of the gas in the rover’s collection is within the headspace of rock samples. These are unique because the gas will be interacting with rocky material inside the tubes for years before the samples can be opened and analyzed in laboratories on Earth. What scientists glean from them will lend insight into how much water vapor hovers near the Martian surface, one factor that determines why ice forms where it does on the planet and how Mars’ water cycle has evolved over time.
      Scientists also want a better understanding of trace gases in the air at Mars. Most scientifically tantalizing would be the detection of noble gases (such as neon, argon, and xenon), which are so nonreactive that they may have been around, unchanged in the atmosphere, since forming billions of years ago. If captured, those gases could reveal whether Mars started with an atmosphere. (Ancient Mars had a much thicker atmosphere than it does today, but scientists aren’t sure whether it was always there or whether it developed later). There are also big questions about how the planet’s ancient atmosphere compared with early Earth’s.
      The headspace would additionally provide a chance to assess the size and toxicity of dust particles — information that will help future astronauts on Mars.
      “The gas samples have a lot to offer Mars scientists,” said Justin Simon, a geochemist at NASA’s Johnson Space Center in Houston, who is part of a group of over a dozen international experts that helps decide which samples the rover should collect. “Even scientists who don’t study Mars would be interested because it will shed light on how planets form and evolve.”
      Apollo’s Air Samples
      In 2021, a group of planetary researchers, including scientists from NASA, studied the air brought back from the Moon in a steel container by Apollo 17 astronauts some 50 years earlier.
      “People think of the Moon as airless, but it has a very tenuous atmosphere that interacts with the lunar surface rocks over time,” said Simon, who studies a variety of planetary samples at Johnson. “That includes noble gases leaking out of the Moon’s interior and collecting at the lunar surface.”
      The way Simon’s team extracted the gas for study is similar to what could be done with Perseverance’s air samples. First, they put the previously unopened container into an airtight enclosure. Then they pierced the steel with a needle to extract the gas into a cold trap — essentially a U-shaped pipe that extends into a liquid, like nitrogen, with a low freezing point. By changing the temperature of the liquid, scientists captured some of the gases with lower freezing points at the bottom of the cold trap.
      “There’s maybe 25 labs in the world that manipulate gas in this way,” Simon said. Besides being used to study the origin of planetary materials, this approach can be applied to gases from hot springs and those emitted from the walls of active volcanoes, he added.
      Of course, those sources provide much more gas than Perseverance has in its sample tubes. But if a single tube doesn’t carry enough gas for a particular experiment, Mars scientists could combine gases from multiple tubes to get a larger aggregate sample — one more way the headspace offers a bonus opportunity for science.
      More About the Mission
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is also characterizing the planet’s geology and past climate, which paves the way for human exploration of the Red Planet. JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      mars.nasa.gov/mars2020/
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-285-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-087
      Share
      Details
      Last Updated Jun 20, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Johnson Space Center Mars Mars 2020 Planetary Environments & Atmospheres Explore More
      5 min read Stephanie Duchesne: Leading with Integrity and Openness for CLDP
      Article 4 hours ago 3 min read Johnson Celebrates LGBTQI+ Pride Month: Meet Maya FarrHenderson
      Article 3 days ago 3 min read Johnson Celebrates LGBTQI+ Pride Month: Meet Michael Chandler
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read Next Generation NASA Technologies Tested in Flight
      Erin Rezich, Ian Haskin, QuynhGiao Nguyen, Jason Hill (Zero-G staff), and George Butt experience Lunar gravity while running test operations on the UBER payload. Credits: Zero-G Teams of NASA researchers put their next-generation technologies to the microgravity test in a series of parabolic flights that aim to advance innovations supporting the agency’s space exploration goals.
      These parabolic flights provide a gateway to weightlessness, allowing research teams to interact with their hardware in reduced gravity conditions for intervals of approximately 22 seconds. The flights, which ran from February to April, took place aboard Zero Gravity Corporation’s G-FORCE ONE aircraft and helped to advance several promising space technologies.

      Under the Fundamental Regolith Properties, Handling, and Water Capture (FLEET) project, researchers tested an ultrasonic blade technology in a regolith simulant at lunar and Martian gravities. On Earth, vibratory tools reduce the forces between the tool and the soil, which also lowers the reaction forces experienced by the system. Such reductions indicate the potential for mass savings for tool systems used in space. 
      This flight test aims to establish the magnitude of force reduction achieved by an ultrasonic tool on the Moon and Mars. Regolith interaction, including excavation, will be important to NASA’s resources to support long-duration lunar and Martian missions.
      This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec.
      Erin Rezich
      Project Principal Investigator
      “This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec. It was a NASA bucket list item for me to conduct a parabolic flight experiment, and it was even more special to do it for my doctoral thesis work. I’m very proud of my team and everyone’s effort to make this a reality,” said Erin Rezich, project principal investigator at NASA’s Glenn Research Center in Cleveland, Ohio. 
      The FLEET project also has a separate payload planned for a future flight test on a suborbital rocket. The Vibratory Lunar Regolith Conveyor will demonstrate a granular material (regolith) transport system to study the vertical transport of lunar regolith simulants (soil) in a vacuum under a reduced gravity environment.
      These two FLEET payloads increase the understanding of excavation behavior and how the excavated soil will be transported in a reduced gravity environment.
      QuynhGiao Nguyen takes experiment notes while Pierre-Lucas Aubin-Fournier and George Butt oversee experiment operations during a soil reset period between parabolas.Zero-G 3D Printed Technologies Take on Microgravity 

      Under the agency’s On-Demand Manufacturing of Electronics (ODME) project, researchers tested 3D printing technologies to ease the use of electronics and tools aboard the International Space Station.

      Flying its first microgravity environment test, the ODME Advanced Toolplate team evaluated a new set of substantially smaller 3D printed tools that provide more capabilities and reduce tool changeouts. The toolplate offers eight swappable toolheads so that new technologies can be integrated after it is sent up to the space station. The 3D printer component enables in-space manufacturing of electronics and sensors for structural and crew-monitoring systems and multi-material 3D printing of metals.
      “The development of these critical 3D printing technologies for microelectronics and semiconductors will advance the technology readiness of these processes and reduce the risk for planned future orbital demonstrations on the International Space Station.
      curtis hill
      ODME Project Principal Investigator
      Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA researchers tested another 3D printing technology developed under the agency’s ODME project for manufacturing flexible electronics in space. The Space Enabled Advanced Devices and Semiconductors team is developing electrohydrodynamic inkjet printer technology for semiconductor device manufacturing aboard the space station. The printer will allow for printing electronics and semiconductors with a single development cartridge, which could be updated in the future for various materials systems.
      (Left to right) Paul Deffenbaugh (Sciperio), Cadré Francis (NASA MSFC), Christopher Roberts (NASA MSFC), Connor Whitley (Sciperio), and Tanner Corby (Redwire Space Technologies) operate the On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer in zero gravity to demonstrate the potential capability of electronics manufacturing in space.Zero-G The On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer mills a Fused Deposition Modeling (FDM) printed plastic substrate surface smooth in preparation for the further printing of electronic traces. Conducting this study in zero gravity allowed for analysis of Foreign Object Debris (FOD) capture created during milling.Zero-G Left to Right: Rayne Wolfe and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA’s Flight Opportunities program supported testing various technologies in a series of parabolic flights earlier this year. These technologies are managed under NASA’s Game Changing Development program within the Space Technology Mission Directorate. Space Enabled Advanced Devices and Semiconductors technology collaborators included Intel Corp., Tokyo Electron America, the University of Wisconsin-Madison, Arizona State University, and Iowa State University. The Space Operations Mission Directorate’s In-Space Production Applications also supports this technology. Advanced Toolplate Technology collaborated with Redwire and Sciperio. The Ultrasonic Blade technology is a partnership with NASA’s Glenn Research Center in Cleveland, Ohio, and Concordia University in Montreal, Quebec, through an International Space Act Agreement.

      For more information about the Game Changing Development program, visit: nasa.gov/stmd-game-changing-development/

      For more information about the Flight Opportunities program, visit: nasa.gov/stmd-flight-opportunities/ 
      Testing In-Space Manufacturing Techs and More in Flight Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Jun 20, 2024 EditorIvry Artis Related Terms
      Game Changing Development Program Flight Opportunities Program Space Technology Mission Directorate Explore More
      3 min read NSTGRO 2024
      Article 7 days ago 3 min read NASA’s RASC-AL Competition Selects 2024 Winners  
      Article 7 days ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Game Changing Development
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Glenn Research Center
      View the full article
  • Check out these Videos

×
×
  • Create New...