Jump to content

Little Pictures winner announced at COP28


Recommended Posts

Little Pictures Competition

The winning entry to a Europe-wide data visualisation contest was announced and showcased last week at COP28. The ‘Little Pictures’ competition challenged the continent’s creative talent to design compelling illustrations using the range of global observation records available from ESA, the European Organisation for the Exploitation of Meteorological Satellites (Eumetsat) and European Centre for Medium-Range Weather Forecasts (ECMWF), to highlight the key changes taking place across the climate.             

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4250-4252: So Many Rocks, So Little Time
      This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4248 – Martian day 4,248 of the Mars Science Laboratory mission – on July 19, 2024, at 02:34:33 UTC. Earth planning date: Friday, July 19, 2024
      As usual with our weekend plans, we are packing a lot of science into today’s three-sol plan. I had the fun of planning a complex and large set of arm activities as the Arm Rover Planner today. Since we did not drive in Wednesday’s plan, we still are looking at targets in the same workspace – shown in the image with the arm down on a contact science target. We are finishing up the observations at our current location on “Fairview Dome.” 
      In our first set of imaging, we begin with a Navcam dust devil movie. Then, ChemCam is taking a LIBS observation on “Koip Peak” (a nodular bedrock) and an RMI mosaic on Texoli butte. We also have Mastcam imaging on Koip Peak, “Amphitheater Dome” (Wednesday’s contact science target), the channel wall, and the AEGIS target from sol 4247. After a nap, we’re ready for the arm. The arm work was challenging today, as we had a lot to do. We start by taking MAHLI images of a target named “Saddlebag Lake,” a bumpy, rough part of the bedrock. We then brush and take MAHLI images of “Eagle Scout Peak,” which is a dusty portion of the same bedrock. We are also running an experiment today to see if we can run the DRT brush in parallel with using our UHF antenna, to downlink data without impacting the data. After integrating with APXS on Eagle Scout Peak, we take nighttime MALHI imaging (using the LEDs) of the CheMin inlet to look for any signs of stuck sample and stow the arm. We are also cleaning out the sample from the CheMin instrument, by “dumping” it out and then running an analysis on the empty cell. 
      The second sol begins with more atmospheric observations. We have another ChemCam LIBS observation of the “Smith Peak” target, which is a dark and dusty spot on the bedrock, and Mastcam mosaics of “Virginia Peak” (the gray edge of the rock), the summit of “Milestone Peak”, and “McDonald Pass” (a nearby piece of bedrock that looks similar to our recent drill target, “Whitebark Pass”). We’re then ready to drive. Today’s drive is taking us about 30 meters south (about 98 feet). We’re driving cross-slope, which is always a challenge because we have to account for sliding sideways, away from the planned path. Fortunately there are no major hazards in the area, so we can tolerate some deviation from our path. This drive should take us close to our next potential drill location! We’re also testing, for the first time on Mars, a new capability that helps the rover make more precise arc turns, which can reduce the amount of steering we need to do, and help preserve our wheels. After taking our normal post-drive imaging, our final activity on this sol is an APXS atmospheric observation. 
      On our third sol, around noon, we are taking a ChemCam AEGIS observation and a lot of atmospheric observations, including another dust devil survey and Mastcam solar tau. Finally, just before handing things over to Monday’s plan, we take additional atmospheric observations in the early morning.
      Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 23, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4248-4249: Lunch at Fairview Dome


      Article


      5 days ago
      2 min read Sols 4246-4247: Next Stop: Fairview Dome


      Article


      1 week ago
      3 min read Sols 4243-4245: Exploring Stubblefield Canyon


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Team “Rumble Ready” from California State Polytechnic University, Pomona, comprised of (from left to right) Professor Mark Gonda, Nicole Xie, Junaid Bodla, Jordan Ragsac, Krishi Gajjar, Gerald McAllister III, and Leara Dominguez, took home first place at the 2024 Gateways to Blue Skies Forum held May 30-31 at NASA Ames Research Center.National Institute of Aerospace The California State Polytechnic University, Pomona, team, with their project titled “Aero-Quake Emergency Response Network,” took first place at the third annual Gateways to Blue Skies Competition. Competing among eight finalist teams that presented their ideas for aviation-related systems for natural disasters, the California State Polytechnic University, Pomona team earned the top award at the 2024 Blue Skies Forum, hosted at NASA’s Ames Research Center May 30-31. The Forum was judged by subject matter experts from NASA and industry. 
      In addition to the first-place recognition, team members were awarded an opportunity to intern at any of the four NASA Aeronautics Centers — Langley Research Center (Hampton, VA), Glenn Research Center (Cleveland, OH), Ames Research Center (Mountain View, CA), and Armstrong Flight Research Center (Edwards, CA) —across the country during the 2024-25 Academic Year.   
      “We truly enjoyed the NASA Blue Skies competition,” said team lead Krishi Gajjar. “We are honored that our efforts have been awarded by the experienced and diverse judging panel. This would not have been possible without the guidance from our advisor, professor Mark Gonda, and our rigorous engineering program at Cal Poly Pomona. We are proud to have grown together as a team and are excited to continue advancing aviation in our future careers as aerospace engineers!” 
      Second place went to Columbia University with their project, “AVATARS: Aerial Vehicles for Avalanche Terrain Assessment and Reporting Systems.”  
      Other awards included:  
      Future Game-Changer Award: Cerritos College | F.I.R.E (Fire Intervention Retardant Expeller)  Most Innovative Award: North Carolina State University | Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (REACHR)  Sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project, the Gateways to Blue Skies Competition is an initiative to engage college students in researching climate-friendly technologies and applications related to the future of aviation. Because of the increase in natural disasters compounded by climate change, the 2024 theme, “Advancing Aviation for Natural Disaster,” asked students to investigate and conceptualize, in terms of feasibility and viability, aviation-related systems that can be applied by 2035 to one phase of management of a chosen type of natural disaster to improve capabilities. 
      Because many emergency response professionals believe there is no one proposed concept that will be applicable for all different natural disasters or can be applied to all phases of management, this competition welcomed a wide range of potential solutions. New technologies and applications gained from this crowdsourced competition may be developed further by NASA for use in coordinating and facilitating disaster management. 
      At the Forum, finalist teams presented concepts of systems that addressed responses to natural disasters such as earthquakes, avalanches, volcanic eruptions, hurricanes, floods, and wildfires.   
      “Whenever NASA engages with students, it’s such a rewarding experience,” said Steven Holz, NASA Aeronautics University Innovation Assistant Project Manager and Blue Skies judge and co-chair. “This competition encourages students to imagine, expand, and tackle the challenges and opportunities that await in the future of aeronautics. The students bring unique concepts and ideas to the table along with a wealth of knowledge and professionalism. It’s always exciting to have the chance to see firsthand what they come up with next.” 
      Students also had the opportunity to network with NASA and industry experts, tour NASA’s Ames Research Center, and gain insight into potential careers and applications that will further the Agency’s mission toward a climate-friendly aviation future. 
      “Because natural disasters are so far-reaching and impactful to so many, we had a lot of interest in this year’s competition,” added Marcus Johnson, project manager in the Aeronautics Directorate at NASA Ames Research Center and 2024 Blue Skies co-chair. “Each of the eight finalist teams that presented at this year’s Forum were passionate about their concepts and each offered compelling ideas.  This competition is about so much more than just “awards,” it’s about connecting, networking and identifying the future leaders in aeronautics.” 
      The 2024 Gateways to Blue Skies Competition is sponsored by NASA’s Aeronautics Research Mission Directorate and administered by the National Institute of Aerospace.  
      **** 
      View the livestream of the competition presentations: https://vimeo.com/showcase/blueskies
      View the competition finalists: https://blueskies.nianet.org/finalists/ 
      To learn more about the 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition, visit: https://blueskies.nianet.org/competition/ 
      For more information about NASA Aeronautics, visit: https://www.nasa.gov/topics/aeronautics/index.html 
      Share
      Details
      Last Updated Jun 03, 2024 Related Terms
      Aeronautics Langley Research Center Explore More
      4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes
      Article 3 days ago 4 min read NASA Releases New High-Quality, Near Real-Time Air Quality Data
      Article 4 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle
      NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more.
      Article 5 days ago View the full article
    • By Space Force
      These awards recognize the outstanding accomplishments of Airmen, Guardians, and civilians contributing to nuclear deterrence operations and the missile operations career field.
      View the full article
    • By NASA
      1 min read
      For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation
      Jupiter’s moon Io, its night side illuminated by reflected sunlight from Jupiter, or “Jupitershine.” Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Emma Wälimäki © CC BY NASA’s Juno spacecraft just made the closest flybys of Jupiter’s moon Io that any spacecraft has carried out in more than 20 years. An instrument on this spacecraft called “JunoCam” returned spectacular, high-resolution images—and raw data are now available for you to process, enhance, and investigate.
      On Dec. 30th, 2023, Juno came within about 930 miles (1,500 kilometers) of the surface of the solar system’s most volcanic world. It made a  second ultra-close flyby of Io just this week. The second pass went predominantly over the southern hemisphere of Io, while prior flybys have been over the north. There’s a lot to see in these photos! There’s evidence of an active plume, tall mountain peaks with well-defined shadows, and lava lakes—some with apparent islands. 
      It will be a challenge to sort all of this out, and the JunoCam scientists need your help. Previous JunoCam volunteers like Gerald Eichstadt have seen their processed images appear in multiple scientific publications and press releases.
      You can find the new raw images, see the creations of other image processors, and submit your own work at: https://www.missionjuno.swri.edu/junocam/processing.
      Share








      Details
      Last Updated Feb 07, 2024 Related Terms
      Citizen Science Jupiter Jupiter Moons Planetary Science View the full article
    • By NASA
      3 min read
      NASA to Showcase Earth Science Data at COP28
      This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others.
      The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12.
      All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel.
      NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here.
      The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change.
      These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits.
      Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality.
      Hyperwall
      At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available.
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 27, 2023 Editor Contact Related Terms
      Climate Change Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
  • Check out these Videos

×
×
  • Create New...