Jump to content

Minding the gap on tropical forest carbon


Recommended Posts

Brazilian tropical forest

Tropical forests are clearly critical to Earth’s climate system, but understanding exactly how much carbon they absorb from the atmosphere, store and release is tricky to calculate, not least because measuring and reporting methods vary. With these measurements paramount for nations assessing the action they are taking to combat the climate crisis, new research shows how differences in estimates of carbon flux associated with human activity can be reconciled.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Watch Carbon Dioxide Move Through Earth’s Atmosphere
      Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Credits:
      NASA’s Scientific Visualization Studio Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers What we’re looking at:
      This global map shows concentrations of carbon dioxide as the gas moved through Earth’s atmosphere from January through March 2020, driven by wind patterns and atmospheric circulation. 
      Because of the model’s high resolution, you can zoom in and see carbon dioxide emissions rising from power plants, fires, and cities, then spreading across continents and oceans.  
      Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio “As policymakers and as scientists, we’re trying to account for where carbon comes from and how that impacts the planet,” said climate scientist Lesley Ott at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “You see here how everything is interconnected by these different weather patterns.”
      You see here how everything is interconnected by these different weather patterns.
      Lesley Ott
      NASA Climate scientist
      What are the sources of CO2? 
      Over China, the United States, and South Asia, the majority of emissions came from power plants, industrial facilities, and cars and trucks, Ott said. Meanwhile, in Africa and South America, emissions largely stemmed from fires, especially those related to land management, controlled agricultural burns and deforestation, along with the burning of oil and coal. Fires release carbon dioxide as they burn.
      Why does the map look like it’s pulsing? 
      Global CO2 ppm for January-March of 2020. This camera move zooms in on the eastern United States. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio There are two primary reasons for the pulsing: First, fires have a clear day-night cycle. They typically flare up during the day and die down at night. 
      Second, you’re seeing the absorption and release of carbon dioxide as trees and plants photosynthesize. Earth’s land and oceans absorb about 50% of carbon dioxide; these are natural carbon sinks. Plants take up carbon dioxide during the day as they photosynthesize and then release it at night through respiration. Notice that much of the pulsing occurred in regions with lots of trees, like mid- or high-latitude forests. And because the data were taken during the Southern Hemisphere summer, you see more pulsing in the tropics and South America, where it was the active growing season. 
      Some of the pulsing also comes from the planetary boundary layer — the lowest 3,000 feet (900 meters) of the atmosphere — which rises as the Earth’s surface is heated by sunlight during the day, then falls as it cools at night.
      The data that drives it:  
      The map was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather model, powered by supercomputers, that is used to simulate what was happening in the atmosphere — including storm systems, cloud formations, and other natural events. GEOS pulls in billions of data points from ground observations and satellite instruments, such as the Terra satellite’s MODIS  and the Suomi-NPP satellite’s VIIRS instruments. Its resolution is more than 100 times greater than a typical weather model. 
      Ott and other climate scientists wanted to know what GEOS would show if it was used to model the movement and density of carbon dioxide in the global atmosphere. 
      “We had this opportunity to say: can we tag along and see what really high-resolution CO2 looks like?” Ott said. “We had a feeling we were going to see plume structures and things that we’ve never been able to see when we do these coarser resolution simulations.” 
      Her instinct was right. “Just seeing how persistent the plumes were and the interaction of the plumes with weather systems, it was tremendous.”
      Why it matters:
      NASA’s Goddard Space Flight Center/Scientific Visualization Studio/ Katie Jepson We can’t tackle climate change without confronting the fact that we’re emitting massive amounts of CO2, and it’s warming the atmosphere, Ott said. 
      Carbon dioxide is a heat-trapping greenhouse gas and the primary reason for Earth’s rising temperatures. As CO2 builds in the atmosphere, it warms our planet. This is clear in the numbers. 2023 was the hottest year on record, according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York. Most of the 10 hottest years on record have occurred in the past decade.
      All this carbon dioxide isn’t harmful to air quality. In fact, we need some carbon dioxide to keep the planet warm enough for life to exist. But when too much CO2 is pumped into the atmosphere, the Earth warms too much and too fast. That’s what has been happening for at least the past half century. The concentration of carbon dioxide in the atmosphere increased from approximately 278 parts per million in 1750, the beginning of the industrial era, to 427 parts per million in May 2024.

      Read More: Emissions from Fossil Fuels Continue to Rise

      Human activities have “unequivocally caused warming,” according to the latest report by the Intergovernmental Panel on Climate Change. This warming is leading to all sorts of changes to our climate, including more intense storms, wildfires, heat waves, and rising sea levels.
      Inside the SVS studio:
      Carbon dioxide exists everywhere in the atmosphere, and the challenge for AJ Christensen, a senior visualization designer at NASA’s Goddard Space Flight Center, was to show the differences in density of this invisible gas.
      “We didn’t want people to get the impression that there was no carbon dioxide in these sparser regions,” Christensen said. “But we also wanted to really highlight the dense regions because that’s the interesting feature of the data. We were trying to show that there’s a lot of density over New York and Beijing.”  
      Data visualizations help people understand how Earth’s systems work, and they can help scientists find patterns in massive datasets, Ott said. 
      “What’s happening is you’re stitching together this very complex array of models to make use of the different satellite data, and that’s helping us fill in this broad puzzle of all the processes that control carbon dioxide,” Ott said. “The hope is that if we understand greenhouse gases really well today, we’ll be able to build models that better predict them over the next decades or even centuries.”
      For more information and data on greenhouse gases, visit the U.S. Greenhouse Gas Center.
      About the Author
      Jenny Marder

      Share








      Details
      Last Updated Jul 23, 2024 Location Goddard Space Flight Center Related Terms
      Climate Change Earth Earth’s Atmosphere Greenhouse Gases Explore More
      3 min read Registration Opens for the 2024 NASA International Space Apps Challenge
      NASA invites innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space…


      Article


      5 days ago
      4 min read NASA Celebrates 20 Years of Earth-Observing Aura Satellite
      A few of the many highlights from the last 20 years since Aura Launched.


      Article


      7 days ago
      5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Emil Cherrington and Christine Evans led the final chapter of the S-CAP Regional Road Show 5/9-10/24 at the SERVIR HKH hub at the International Centre for Integrated Mountain Development (ICIMOD) in Kathmandu, Nepal. The exchange at SERVIR HKH followed up prior S-CAP focused capacity building activities that were conducted in Central America (February 2023, October 2023), Amazonia (March 2023), Southeast Asia (August 2023), and West Africa (November 2023). About a dozen participants from ICIMOD participated, including the three main implementers of the HKH Regional Land Cover Monitoring System (RLCMS). Cherrington and Evans were also invited to present on S-CAP in the upcoming 7/22-26/24 SERVIR / SilvaCarbon workshop in Nepal being led by AST PI Sean Healey (USDA Forest Service).
      View the full article
    • By NASA
      4 Min Read Tropical Solstice Shadows
      June 20, 2024, marks the summer solstice — the beginning of astronomical summer — in the Northern Hemisphere. Credits: NASA/DSCOVR EPIC Solstices mark the changing of seasons, occur twice a year, and feature the year’s shortest and longest daylight hours – depending on your hemisphere. These extremes in the length of day and night make solstice days more noticeable to many observers than the subtle equality of day and night experienced during equinoxes. Solstices were some of our earliest astronomical observations, celebrated throughout history via many summer and winter celebrations.

      Solstices occur twice yearly, and in 2024 they arrive on June 20 at 4:50 PM EDT (20:50 UTC), and December 21 at 4:19 AM EST (9:18 UTC). The June solstice marks the moment when the Sun is at its northernmost position in relation to Earth’s equator, and the December solstice marks its southernmost position. The summer solstice occurs on the day when the Sun reaches its highest point at solar noon for regions outside of the tropics, and those observers experience the longest amount of daylight for the year. Conversely, during the winter solstice, the Sun is at its lowest point at solar noon for the year and observers outside of the tropics experience the least amount of daylight- and the longest night – of the year.

      The June solstice marks the beginning of summer for folks in the Northern Hemisphere and winter for Southern Hemisphere folks, and in December the opposite is true, as a result of the tilt of Earth’s axis of rotation. For example, this means that the Northern Hemisphere receives more direct light from the Sun than the Southern Hemisphere during the June solstice. Earth’s tilt is enough that northern polar regions experience 24-hour sunlight during the June solstice, while southern polar regions experience 24-hour night, deep in Earth’s shadow. That same tilt means that the Earth’s polar regions also experience a reversal of light and shadow half a year later in December, with 24 hours of night in the north and 24 hours of daylight in the south. Depending on how close you are to the poles, these extreme lighting conditions can last for many months, their duration deepening the closer you are to the poles.


      A presenter from the San Antonio Astronomy Club in Puerto Rico demonstrating some Earth-Sun geometry to a group during a “Zero Shadow Day” event.  As Puerto Rico lies a few degrees south of the Tropic of Cancer, their two zero shadow days arrive just a few weeks before and after the June solstice. Globes are a handy and practical way to help visualize solstices and equinoxes for large outdoor groups, especially outdoors during sunny days!Credit: Juan Velázquez / San Antonio Astronomy Club
      While solstice days are very noticeable to observers in mid to high latitudes, that’s not the case for observers in the tropics – areas of Earth found between the Tropic of Cancer and the Tropic of Capricorn. Instead, individuals experience two “zero shadow” days per year. These days, with the sun directly overhead at solar noon, objects cast a minimal shadow compared to the rest of the year. If you want to see your own shadow at that moment, you have to jump! The exact date for zero shadow days depends on latitude; observers on the Tropic of Cancer (23.5° north of the equator) experience a zero-shadow day on the June solstice, and observers on the Tropic of Capricorn (23.5° south of the equator) get their zero-shadow day on December’s solstice. Observers on the equator experience two zero shadow days, being exactly in between these two lines of latitude; equatorial zero shadow days fall on the March and September equinoxes.

      There is some serious science that can be done by carefully observing solstice shadows. In approximately 200 BC, Eratosthenes is said to have observed sunlight shining straight down the shaft of a well during high noon on the solstice, near the modern-day Egyptian city of Aswan. Inspired, he compared measurements of solstice shadows between that location and measurements taken north, in the city of Alexandria. By calculating the difference in the lengths of these shadows, along with the distance between the two cities, Eratosthenes calculated a rough early estimate for the circumference of Earth – and also provided further evidence that the Earth is a sphere!

      Are you having difficulty visualizing solstice lighting and geometry? You can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find more fun activities and resources like this model on NASA’s Wavelength and Energy activity.

      Originally posted by Dave Prosper: June 2022
      Last Updated by Kat Troche: April 2024
      Simplified Summary
      The June solstice happens when the Sun is farthest north from the equator, and the December solstice is when it’s farthest south. During the June one, places outside the tropics have the longest day of the year, and during December’s, they have the shortest. In the Northern Hemisphere, June marks the start of summer, while in the Southern Hemisphere, it’s winter, and it’s the opposite in December. This happens because of the axis on which Earth leans. Because of this tilt, places near the North Pole have continuous daylight in June, while places near the South Pole have continuous darkness. In December, it’s the other way around. This goes on for months, depending on how close you are to the poles. People in the tropics, between the Tropic of Cancer and the Tropic of Capricorn, don’t see as big of a change in daylight. Instead, they have two days a year where shadows almost disappear because the Sun is directly overhead at noon. If you want to see your shadow, you have to jump! The exact days depend on where you are. Around 200 BC, Eratosthenes noticed the Sun was directly overhead on the solstice in one place, comparing that to another place where it wasn’t overhead, and was able to calculate Earth’s size and shape.
      View the full article
    • By NASA
      “I feel that my larger purpose at NASA, which I’ve felt since I came on as an intern, is to leave NASA a better place than I found it. I know there are so many people who are just like myself, who have had this big, huge dream of being at NASA from some sort of spark in their childhood.
      “I have a privilege as a well-spoken, affable, femme, white woman and I’m compelled to use this privilege for good — to advocate for others. I feel like this dream should be achievable for anyone who has the merit to be here without wondering ‘Are my needs going [to] be met?’ Or, ‘If I’m a part of a particular community, will I be faced with any sort of backlash because of the culture?’
      “As an Agency, we’re trying to do incredibly hard things moving forward. And going forward, I choose to use the privilege of being at HQ and being very close to leadership as a vessel for progress to help ensure we get closer to everybody having the right to achieve their dream here.”
      — Mallory Carbon, Management and Program Analyst, NASA Headquarters
      Image Credit: NASA/Bill Ingalls
      Interviewer: NASA/Thalia Patrinos
      Check out some of our other Faces of NASA. 

      View the full article
    • By NASA
      Patrick Duran (SPoRT/ST11) participated in the annual Tropical Cyclone Operations and Research Forum (TCORF) at the NOAA Aircraft Operations Center in Lakeland, FL 3/5-6/24. TCORF brings together hurricane researchers, forecasters, and aircraft reconnaissance personnel from NOAA, the US Navy, and the US Air Force to discuss recent research results and plans for operational hurricane forecasting and aircraft reconnaissance during the upcoming hurricane season. The forum provided an opportunity to get initial stakeholder feedback from the hurricane aircraft reconnaissance community on real-time situational awareness products currently being developed by SPoRT. These products are designed to be used aboard an aircraft while it’s in the storm to make decisions on whether to modify the flight track and instrument deployments to accommodate a pre-planned research experiment called a “module.” Conversations at the forum also led to an enhanced collaboration with the NOAA Hurricane Research Division that will incorporate SPoRT into a module designed to perform cal/val for NASA’s TROPICS constellation. A new collaboration also was formed with NOAA’s Cooperative Institute for Research in the Atmosphere to better understand the Geostationary Lightning Mapper’s detection efficiency in the hurricane inner core.
      View the full article
  • Check out these Videos

×
×
  • Create New...