Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      At Goddard Space Flight Center, the GSFC Data Science Group has completed the testing for their SatVision Top-of-Atmosphere (TOA) Foundation Model, a geospatial foundation model for coarse-resolution all-sky remote sensing imagery. The team, comprised of Mark Carroll, Caleb Spradlin, Jordan Caraballo-Vega, Jian Li, Jie Gong, and Paul Montesano, has now released their model for wide application in science investigations.
      Foundation models can transform the landscape of remote sensing (RS) data analysis by enabling the pre-training of large computer-vision models on vast amounts of remote sensing data. These models can be fine-tuned with small amounts of labeled training and applied to various mapping and monitoring applications. Because most existing foundation models are trained solely on cloud-free satellite imagery, they are limited to applications of land surface or require atmospheric corrections. SatVision-TOA is trained on all-sky conditions which enables applications involving atmospheric variables (e.g., cloud or aerosol).
      SatVision TOA is a 3 billion parameter model trained on 100 million images from Moderate Resolution Imaging Spectroradiometer (MODIS). This is, to our knowledge, the largest foundation model trained solely on satellite remote sensing imagery. By including “all-sky” conditions during pre-training, the team incorporated a range of cloud conditions often excluded in traditional modeling. This enables 3D cloud reconstruction and cloud modeling in support of Earth and climate science, offering significant enhancement for large-scale earth observation workflows.
      With an adaptable and scalable model design, SatVision-TOA can unify diverse Earth observation datasets and reduce dependency on task-specific models. SatVision-TOA leverages one of the largest public datasets to capture global contexts and robust features. The model could have broad applications for investigating spectrometer data, including MODIS, VIIRS, and GOES-ABI. The team believes this will enable transformative advancements in atmospheric science, cloud structure analysis, and Earth system modeling.
      The model architecture and model weights are available on GitHub and Hugging Face, respectively. For more information, including a detailed user guide, see the associated white paper: SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery. 
      Examples of image reconstruction by SatVision-TOA. Left: MOD021KM v6.1 cropped image chip using MODIS bands [1, 3, 2]. Middle: The same images with randomly applied 8×8 mask patches, masking 60% of the original image. Right: The reconstructed images produced by the model, along with their respective Structural Similarity Index Measure (SSIM) scores. These examples illustrate the model’s ability to preserve structural detail and reconstruct heterogeneous features, such as cloud textures and land-cover transitions, with high fidelity.NASAView the full article
    • By NASA
      Astronaut cognitive performance remains generally stable

      Researchers found that astronauts on six-month missions to the International Space Station demonstrated generally stable cognitive performance but mild changes in certain areas, including processing speed, working memory, attention, and willingness to take risks. This research provides baseline data that could help identify cognitive changes on future missions and support development of appropriate countermeasures.

      Research to date has suggested mild decreases in some cognitive performance domains during spaceflight, likely influenced by spaceflight stressors such as radiation and sleep disruption. Longer missions represent greater exposure to these hazards and possible increases in individual vulnerabilities to them. Standard Measures collects a set of psychological and physiological measurements related to human spaceflight risks, including a cognition test battery, from astronauts before, during, and after missions. This paper includes the largest sample of professional astronauts published to date.

      NASA astronaut Kjell Lindgren performs a cognition test on the space station. NASA Scientific discoveries result from NSF/CASIS research

      Researchers published highlights of discoveries resulting from a collaboration between the National Science Foundation (NSF) and the Center for the Advancement of Science in Space (CASIS) in support of research on transport phenomena in space. A few examples include:
      combustion studies that advance our understanding of soot formation, wildfires, flame-spread in buildings, and other fundamental combustion phenomena important in everyday life on Earth heat transfer studies that provide insight into how the physics of evaporation and condensation affect cooling systems on spacecraft and in microelectronics and other industries on the ground fluid dynamics studies validating theories of how drops spread, relevant to the design of thermal management systems and for fluid processing on spacecraft, as well as in medical devices and other ground-based applications
      Removing gravity enables research on fundamental physical phenomena that is difficult or impossible to conduct on Earth. The investigations that led to the findings above are Spherical Cool Flames, which observed the chemical reactions of cool diffusion flames for insight into combustion and fire behavior; Constrained Vapor Bubble, a study of how evaporation and condensation affect the efficiency of cooling devices; and Capillary Flow Experiment 2, research on wetting (a liquid’s ability to spread across a surface) to support design of better systems to process liquids.
      European Space Agency astronaut Alexander Gerst works on the Capillary Flow Experiment.NASAView the full article
    • By NASA
      The Fresh Eyes on Ice team receives the C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities. H. Buurman Congratulations to the Fresh Eyes on Ice project, which received a C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities! The award recognizes programs that demonstrate how colleges and universities have redesigned their learning, discovery, and engagement missions to deepen their partnerships and achieve broader impacts in their communities.
      “Thank you to all of you for making this project what it is.” said Fresh Eyes on Ice project lead Research Professor Katie Spellman from the University of Alaska, Fairbanks. “We couldn’t do it without you.”
      Fresh Eyes on Ice tracks changes in the timing and thickness of ice throughout Alaska and the circumpolar north. You can get involved by downloading the GLOBE Observer app and taking photos of ice conditions using the GLOBE Land Cover protocol.
      Fresh Eyes on Ice is supported by the Navigating the New Arctic Program of the U.S. National Science Foundation and the NASA Citizen Science for Earth Systems Program.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Dec 05, 2024 Related Terms
      Citizen Science Earth Science Explore More
      4 min read 2024 AGU Fall Meeting Hyperwall Schedule


      Article


      1 day ago
      2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!


      Article


      1 week ago
      9 min read The Earth Observer Editor’s Corner: Fall 2024


      Article


      3 weeks ago
      View the full article
    • By Space Force
      CMSSF Bentivegna visited Pituffik Space Base to meet with Airmen and Guardians who operate at the “Top of the World” at the DoD’s most northern and remote installation.

      View the full article
    • By NASA
      Space-grown crystals could lead to targeted cancer drugs

      Researchers used space-grown protein crystals to determine the structure of a helix-loop-helix (HLH) peptide (one with a double helix and connecting loop) in a complex with vascular endothelial growth factor-A (VEGF). VEGF prompts the formation of new blood vessels and inhibiting it can stop tumor growth. This finding suggests that HLH peptides could be used to create drugs to target disease-related proteins like VEGF.

      JAXA PCG, an investigation from JAXA (Japan Aerospace Exploration Agency), grew protein crystals in microgravity and returned them to Earth for detailed analysis of their structures. Microgravity enables production of high-quality crystals, and examining their structures supports the design of new drugs and other types of research.

      Japan Aerospace Exploration Agency astronaut Soichi Noguchi works on the PCG experiment aboard the International Space Station.NASA Wood could make satellites more sustainable

      Wood exposed to space for approximately 10 months showed no change in weight and no erosion due to atomic oxygen. This finding could inform selection of the appropriate species and thickness of wood for use in building satellites.

      Metal satellites reentering Earth’s atmosphere can generate particles and aerosols that may harm the ozone layer. Wood becomes water and carbon dioxide on reentry, does not contribute to atmospheric pollution, and could provide a more sustainable option for future space exploration. JAXA’s Exposure of Wood to Outer Space evaluated how atomic oxygen, galactic cosmic rays, and solar energetic particles in space affect the mechanical properties of wood.

      Different types of wood to be tested in space as a building material for satellites. Kyoto University Analyzing glass-forming ability of magnesium silicates

      Researchers report detailed structural and atomic information for glassy and liquid magnesium silicates, which are important in glass science and geoscience. The results suggest that electronic structure does not play an important role in determining glass-forming ability, but atomic structure does.

      JAXA’s Fragility measured thermophysical properties such as density and viscosity of oxidized molten metals using the International Space Station’s Electrostatic Levitation Furnace (ELF) to gain insight into glass formation and the design of novel materials. The ELF makes it possible to observe the behavior of materials without the use of a container, providing information crucial for examining glass formation.

      NASA astronaut Scott Kelly works on the Electrostatic Levitation Furnace aboard the International Space Station.NASAView the full article
  • Check out these Videos

×
×
  • Create New...