Jump to content

Recommended Posts

Posted
On the top of a mountain ridge in Antarctica, the remains of what appears to be part of an ancient fortress wall can be observed. 

ancient%20fortress%20wall%20(3).png


The first structure measures 32 meters in height, 26 meters in length, and 16 meters in width. A second similar structure is visible in the opposite direction. The two structures seem to have been part of an ancient fortress wall. 

Furthermore, it is noteworthy that below the first structure, a large cave is visible, possibly connected to the first structure. 

A strange large tube, measuring 10 meters in length and 5 meters in width, seemly hovering in the air before the cave, defying conventional explanations. 

ancient%20fortress%20wall%20(1).png

ancient%20fortress%20wall%20(2).png

These ancient structures, the cave (or portal), and the strange cylinder (resembling a UFO) in the air, as well as next to the first structure, you can see what looks like a large antenna, or crane, all contribute to the mysterious ambiance surrounding this location. 

At all, it raises questions about the activities that may have transpired in this remote Antarctic area. 

Coordinates Google Earth: 78°10'34.87"S 162° 2'27.51"E

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Since November 2024, strange blinking lights have been reported worldwide, an unexplained phenomenon that’s left many puzzled. MrMBB333 believes he may have found a connection. 

      Also known as electrical pollution, dirty electricity refers to high-frequency voltage spikes that ride along standard power lines. These rogue signals, forms of electromagnetic interference (EMI), can spread through our infrastructure, causing devices to glitch or behave unpredictably. 
      If this interference is appearing globally, the source might be something massive, possibly deep within Earth’s core. Rogue frequencies from the core could travel up and interact with power grids, solar systems, and transmission lines, triggering widespread anomalies. 
      Supporting this idea is a discovery from NASA’s ANITA project in Antarctica. While searching for cosmic neutrinos, scientists instead detected impossible radio signals rising from deep within Earth, signals that defy current physics.  
      According to current science, these waves should have been absorbed by the Earth’s crust long before reaching the detectors. But they weren’t. 
      When researchers checked their findings against other experiments, nothing lined up. This means they didn’t detect neutrinos, but something entirely unknown. Could this be a new kind of particle? A glitch in reality? Or something even stranger? 
      Although it is not known whether the strange radio signals detected deep beneath the Antarctic ice are related to the rogue signals believed to originate from Earth's core, MrMBB333 suggests there could be a connection. He proposes that similar forms of electromagnetic interference (EMI) might be disrupting global electronics and even contributing to the mysterious blinking light phenomenon. 
      Another possible factor at play is that the magnetic field is weakening as well as Solar Cycle 25 — the current 11-year cycle of solar activity marked by the Sun’s magnetic field reversal and increasing sunspot activity. This cycle began in December 2019 and is expected to reach its peak in 2025. 
      Therefore, could this solar phenomenon be interfering with the rogue electromagnetic signals from the Earth’s core are behind the strange blinking lights observed around the world? 
      If that’s the case, although I don’t recall the blinking light phenomenon ever appearing this intensely before, then the strange lights may begin to fade as Solar Cycle 25 winds down. Still, that doesn’t explain the origin of the mysterious radio signals rising from deep beneath Antarctica’s ice.
        View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Searching for Ancient Rocks in the ‘Forlandet’ Flats
      NASA’s Mars Perseverance rover acquired this image of the “Fallbreen” workspace using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. This image was acquired on May 22, 2025 (Sol 1512, or Martian day 1,512 of the Mars 2020 mission) at the local mean solar time of 14:39:01. NASA/JPL-Caltech Written by Henry Manelski, Ph.D. student at Purdue University
      This week Perseverance continued its gradual descent into the relatively flat terrain outside of Jezero Crater. In this area, the science team expects to find rocks that could be among the oldest ever observed by the Perseverance rover — and perhaps any rover to have explored the surface of Mars — presenting a unique opportunity to understand Mars’ ancient past. Perseverance is now parked at “Fallbreen,” a light-toned bedrock exposure that the science team hopes to compare to the nearby olivine-bearing outcrop at “Copper Cove.” This could be a glimpse of the geologic unit rich in olivine and carbonate that stretches hundreds of kilometers to the west of Jezero Crater. Gaining insight into how these rocks formed could have profound implications for our constantly evolving knowledge of this region’s history. Perseverance’s recent traverses marked another notable transition. After rolling past Copper Cove, Perseverance entered the “Forlandet” quadrangle, a 1.2-square-kilometer (about 0.46 square mile, or 297-acre) area along the edge of the crater that the science team named after Forlandet National Park on the Norwegian archipelago of Svalbard. Discovered in the late 16th century by Dutch explorers, this icy set of islands captured the imagination of a generation of sailors searching for the Northwest Passage. While Perseverance is in the Forlandet quad, landforms and rock targets will be named informally after sites in and around this national park on Earth. As the rover navigates through its own narrow passes in the spirit of discovery, driving around sand dunes and breezing past buttes, we hope it channels the perseverance of the explorers who once gave these rocks their names.
      Share








      Details
      Last Updated Jun 06, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site


      Article


      2 days ago
      2 min read Sols 4556-4558: It’s All in a Day’s (box)Work


      Article


      3 days ago
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By USH
      What would you do if you suddenly felt an unseen presence, turned around—and found yourself face to face with a seven-foot-tall, insect-like entity? Since 2006, anglers along New Jersey’s Musconetcong River have reported startling encounters with just such a being: a towering, humanoid creature that closely resembles a praying mantis. 

      But these aren’t just fleeting sightings. Witnesses frequently describe deeply unsettling experiences: telepathic communication, a sense of their thoughts or memories being accessed, and profound physiological effects. Consistent patterns emerge—electronic devices glitch, the surrounding forest falls unnaturally silent, and a strange, low-frequency hum seems to vibrate through the air. 
      More intriguingly, these mantis-like figures aren’t limited to modern encounters. Strikingly similar forms appear in ancient art across the globe, from 8,000-year-old cave paintings to references in Egyptian iconography. Could these entities have been with us since the dawn of civilization? 
      Theories vary widely. Some suggest these beings are an advanced species of insectoid extraterrestrials, possibly master geneticists overseeing hybridization programs involving humanity. Others propose a more Earth-bound origin, perhaps they’re a secret lineage of evolved terrestrial insects, hiding in the shadows of time. 
      And then there’s the interdimensional hypothesis: that these creatures aren’t physical in the way we understand, but exist in a parallel state of reality, occasionally phasing into ours. 
      Some researchers have even speculated that geological fault lines, like those beneath the Musconetcong River, could serve as energetic gateways, allowing these entities to cross between dimensions. 
      One thing is clear: the Mantis beings are watching and they may have been here far longer than we’ve dared to imagine.
        View the full article
    • By USH
      The Curiosity rover continues to capture fascinating anomalies on the Martian surface. In this instance, researcher Jean Ward has examined a particularly intriguing discovery: a disc-shaped object embedded in the side of a mound or hill. 
      The images were taken by the Curiosity rover’s Mast Camera (Mastcam) on April 30, 2025 (Sol 4526). To improve clarity, Ward meticulously removed the grid overlay from the photographs, enhancing the visibility of the object. 
      To provide better spatial context for the disc’s location, Ward assembled two of the images into a collage. In the composite, you can see the surrounding area including a ridge, and the small mound where the disc appears partially embedded, possibly near the entrance of an opening. 

      The next image offers the clearest view of the anomaly. Ward again removed the grid overlay and subtly enhanced the contrast to bring out finer details, as the original image appeared overly bright and washed out. 
      In the close-up, displayed at twice the original scale, the smooth arc of the disc is distinctly visible. Its texture seems unusual, resembling stone or a slab-like material, flat yet with a defined curvature. 

      Might this disc-like structure have been engineered as a gateway, part of a hidden entrance leading to an architectural complex embedded within the hillside, hinting at a long-forgotten subterranean stronghold once inhabited by an extraterrestrial civilization? 
      Links original NASA images: https://mars.nasa.gov/raw_images/1461337/ https://mars.nasa.gov/raw_images/1461336/https://mars.nasa.gov/raw_images/1461335/
        View the full article
    • By NASA
      X-ray: NASA/CXC/Technion/N. Keshet et al.; Illustration: NASA/CXC/SAO/M. Weiss People often think about archaeology happening deep in jungles or inside ancient pyramids. However, a team of astronomers has shown that they can use stars and the remains they leave behind to conduct a special kind of archaeology in space.
      Mining data from NASA’s Chandra X-ray Observatory, the team of astronomers studied the relics that one star left behind after it exploded. This “supernova archaeology” uncovered important clues about a star that self-destructed – probably more than a million years ago.
      Today, the system called GRO J1655-40 contains a black hole with nearly seven times the mass of the Sun and a star with about half as much mass. However, this was not always the case.
      Originally GRO J1655-40 had two shining stars. The more massive of the two stars, however, burned through all of its nuclear fuel and then exploded in what astronomers call a supernova. The debris from the destroyed star then rained onto the companion star in orbit around it, as shown in the artist’s concept.
      This artist’s impression shows the effects of the collapse and supernova explosion of a massive star. A black hole (right) was formed in the collapse and debris from the supernova explosion is raining down onto a companion star (left), polluting its atmosphere.CXC/SAO/M. Weiss With its outer layers expelled, including some striking its neighbor, the rest of the exploded star collapsed onto itself and formed the black hole that exists today. The separation between the black hole and its companion would have shrunk over time because of energy being lost from the system, mainly through the production of gravitational waves. When the separation became small enough, the black hole, with its strong gravitational pull, began pulling matter from its companion, wrenching back some of the material its exploded parent star originally deposited.
      While most of this material sank into the black hole, a small amount of it fell into a disk that orbits around the black hole. Through the effects of powerful magnetic fields and friction in the disk, material is being sent out into interstellar space in the form of powerful winds.
      This is where the X-ray archaeological hunt enters the story. Astronomers used Chandra to observe the GRO J1655-40 system in 2005 when it was particularly bright in X-rays. Chandra detected signatures of individual elements found in the black hole’s winds by getting detailed spectra – giving X-ray brightness at different wavelengths – embedded in the X-ray light. Some of these elements are highlighted in the spectrum shown in the inset.
      The team of astronomers digging through the Chandra data were able to reconstruct key physical characteristics of the star that exploded from the clues imprinted in the X-ray light by comparing the spectra with computer models of stars that explode as supernovae. They discovered that, based on the amounts of 18 different elements in the wind, the long-gone star destroyed in the supernova was about 25 times the mass of the Sun, and was much richer in elements heavier than helium in comparison with the Sun.
      This analysis paves the way for more supernova archaeology studies using other outbursts of double star systems.
      A paper describing these results titled “Supernova Archaeology with X-Ray Binary Winds: The Case of GRO J1655−40” was published in The Astrophysical Journal in May 2024. The authors of this study are Noa Keshet (Technion — Israel Institute of Technology), Ehud Behar (Technion), and Timothy Kallman (NASA’s Goddard Space Flight Center).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features an artist’s rendering of a supernova explosion, inset with a spectrum graph.
      The artist’s illustration features a star and a black hole in a system called GRO J1655-40. Here, the black hole is represented by a black sphere to our upper right of center. The star is represented by a bright yellow sphere to our lower left of center. In this illustration, the artist captures the immensely powerful supernova as a black hole is created from the collapse of a massive star, with an intense burst of blurred beams radiating from the black sphere. The blurred beams of red, orange, and yellow light show debris from the supernova streaking across the entire image in rippling waves. These beams rain debris on the bright yellow star.
      When astronomers used the Chandra X-ray Observatory to observe the system in 2005, they detected signatures of individual elements embedded in the X-ray light. Some of those elements are highlighted in the spectrum graph shown in the inset, positioned at our upper lefthand corner.
      The graph’s vertical axis, on our left, indicates X-ray brightness from 0.0 up to 0.7 in intensity units. The horizontal axis, at the bottom of the graph, indicates Wavelength from 6 to 12 in units of Angstroms. On the graph, a tight zigzagging line begins near the top of the vertical axis, and slopes down toward the far end of the horizontal axis. The sharp dips show wavelengths where the light has been absorbed by different elements, decreasing the X-ray brightness. Some of the elements causing these dips have been labeled, including Silicon, Magnesium, Iron, Nickel, Neon, and Cobalt.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...