Jump to content

Chandra Catches Spider Pulsars Destroying Nearby Stars


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus. Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago. In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red. Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own.
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; IR:NASA/JPL/Caltech; Image Processing: NASA/CXC/SAO/N. Wolk

A group of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri is helping astronomers understand how these spider pulsars prey on their stellar companions.

pulsar is the spinning dense core that remains after a massive star collapses into itself to form a neutron star. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. Some pulsars spin around dozens to hundreds of times per second, and these are known as millisecond pulsars.

Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming out from the spider pulsars, the outer layers of the pulsar’s companion stars are methodically stripped away.

Astronomers recently discovered 18 millisecond pulsars in Omega Centauri — located about 17,700 light-years from Earth — using the Parkes and MeerKAT radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if any of the millisecond pulsars give off X-rays.

They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters.

A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.
X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; Image Processing: NASA/CXC/SAO/N. Wolk

There are two varieties of spider pulsars based on the size of the star being destroyed. “Redback” spider pulsars are damaging companion stars weighing between a tenth and a half the mass of the Sun. Meanwhile, the “black widow” spider pulsars are damaging companion stars with less than 5 percent of the Sun’s mass.

The team found a clear difference between the two classes of spider pulsars, with the redbacks being brighter in X-rays than the black widows, confirming previous work. The team is the first to show a general correlation between X-ray brightness and companion mass for spider pulsars, with pulsars that produce more X-rays being paired with more massive companions. This gives clear evidence that the mass of the companion to spider pulsars influences the X-ray dose the star receives.

The X-rays detected by Chandra are mainly thought to be generated when the winds of particles flowing away from the pulsars collide with winds of matter blowing away from the companion stars and produce shock waves, similar to those produced by supersonic aircraft.

Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity — cosmically speaking — causes the energetic particles from the pulsars to be particularly damaging to their companion stars.

This finding agrees with theoretical models that scientists have developed. Because more massive stars produce a denser wind of particles, there is a stronger shock — producing brighter X-rays — when their wind collides with the particles from the pulsar. The proximity of the companion stars to their pulsars means the X-rays can cause significant damage to the stars, along with the pulsar’s wind.

Chandra’s sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other. Several of the millisecond pulsars in Omega Centauri have other, unrelated X-ray sources only a few arc seconds away. (One arc second is the apparent size of a penny seen at a distance of 2.5 miles.)

The paper describing these results will be published in the December issue of the Monthly Notices of the Royal Astronomical Society, and a preprint of the accepted paper is available online. The authors of the paper are Jiaqi (Jake) Zhao and Craig Heinke, both from the University of Alberta in Canada.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On July 23, 1999, space shuttle Columbia took to the skies on its 26th trip into space, to deliver its heaviest payload ever – the Chandra X-ray Observatory. The STS-93 crew included Commander Eileen M. Collins, the first woman to command a space shuttle mission, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine “Cady” G. Coleman, Steven A. Hawley, and Michel A. Tognini of the French Space Agency (CNES). On the mission’s first day, they deployed Chandra, the most powerful X-ray telescope. With a planned five-year lifetime, Chandra continues its observations after a quarter century. For the next four days, the astronauts worked on twenty secondary middeck payloads and conducted Earth observations. The successful five-day mission ended with a night landing.

      Left: The STS-93 crew patch. Middle: Official photo of the STS-93 crew of Eileen M. Collins, left, Steven A. Hawley, Jeffrey S. Ashby, Michel A. Tognini of France, and Catherine “Cady” G. Coleman. Right: The patch for the Chandra X-ray Observatory.
      Tognini, selected by CNES in 1985 and a member of NASA’s class of 1995, received the first assignment to STS-93 in November 1997. He previously flew aboard Mir as a cosmonaut researcher, spending 14 days aboard the station in 1992. On March 5, 1998, First Lady Hilary R. Clinton announced Collins’ assignment as the first woman space shuttle commander in a ceremony at the White House together with President William J. “Bill” Clinton. NASA announced the rest of the crew the same day. For Collins, selected in the class of 1990, STS-93 represented her third space mission, having previously served as pilot on STS-63 and STS-84. Ashby, a member of the class of 1994, made his first flight aboard STS-93, while Coleman, selected in 1992, made her second flight, having flown before on STS-73. Hawley made his fifth flight, having previously served as a mission specialist on STS-41D, STS-61C, STS-31, and STS-82. He has the distinction of making the last flight by any member of his class of 1978, more than 21 years after his selection.

      Left: Schematic of the Chandra X-ray Observatory showing its major components. Right: Diagram of the trajectory Chandra took to achieve its final operational 64-hour orbit around the Earth – IUS refers to the two burns of the Inertial Upper Stage and IPS to the five burns of Chandra’s Integral Propulsion System.
      Because the Earth’s atmosphere absorbs X-ray radiation emitted by cosmic sources, scientists first came up with the idea of a space-based X-ray telescope in the 1970s. NASA launched its first X-ray telescope called Einstein in 1978, but scientists needed a more powerful instrument, and they proposed the Advanced X-ray Astrophysics Facility (AXAF). After a major redesign of the telescope in 1992, in 1998 NASA renamed AXAF the Chandra X-ray Observatory after Indian American Nobel Prize-winning theoretical physicist Subrahmanyan Chandrasekhar who made significant contributions to our knowledge about stars, stellar evolution, and black holes. Chandra, the third of NASA’s four Great Observatories, can detect X-ray sources 100 times fainter than any previous X-ray telescope. At 50,162 pounds including the Inertial Upper Stage (IUS) it used to achieve its operational orbit, Chandra remains the heaviest payload ever launched by the space shuttle, and at 57 feet long, it took up nearly the entire length of the payload bay. It has far exceeded its expected five-year lifetime, still returning valuable science after 25 years.

      Left: The STS-93 crew during the Terminal Countdown Demonstration Test. Middle: The Chandra X-ray Observatory loaded into Columbia’s payload bay. Right: Liftoff of Columbia on the STS-93 mission carrying the Chandra X-ray Observatory and the first woman shuttle commander.
      Columbia returned to KSC following its previous flight, the STS-90 Neurolab mission, in May 1998. Workers in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter and removed the previous payload. With all four orbiters at KSC at the same time, workers temporarily stowed Columbia in the Vehicle Assembly Building (VAB), returning it to the OPF for final preflight processing on April 15, 1999. Rollover of Columbia from the OPF to the VAB took place on June 2, where workers mated it with an external tank and two solid rocket boosters. Following integrated testing, the stack rolled out to Launch Pad 39B on June 7. The crew participated in the Terminal Countdown Demonstration Test on June 24. Workers placed Chandra in Columbia’s payload bay three days later.
      On July 23, 1994, Columbia thundered into the night sky from KSC’s Launch Pad 39B to begin the STS-93 mission. Two previous launch attempts on July 20 and 22 resulted in scrubs due to a faulty sensor and bad weather, respectively. As Columbia rose into the sky, for the first time in shuttle history a woman sat in the commander’s seat. Far below, problems arose that could have led to a catastrophic abort scenario. During the engine ignition sequence, a gold pin in Columbia’s right engine came loose, ejected with great force by the rapid flow of hot gases, and struck the engine’s nozzle, punching holes in three of its hydrogen cooling tubes. Although small, the hydrogen leak caused the engine’s controller to increase the flow of oxidizer, making the engine run hotter than normal. Meanwhile, a short-circuit knocked out the center engine’s digital control unit (DCU) and the right engine’s backup DCU. Both engines continued powered flight without a redundant DCU, with a failure in either causing a catastrophic abort. Although this did not occur, the higher than expected oxidizer usage led to main engine cutoff occurring 1.5 seconds early, leaving Columbia in a lower than planned orbit. The shuttle’s Orbiter Maneuvering System engines made up for the deficit. The harrowing events of the powered flight prompted Ascent Flight Director John P. Shannon to comment, “Yikes! We don’t need any more of these.”

      Left: Eileen M. Collins, the first woman shuttle commander, shortly after reaching orbit. Right: First time space flyer STS-93 Pilot Jeffrey S. Ashby, shortly after reaching space.
      After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts prepared for the mission’s primary objective, deployment of Chandra, and also began activating some of the middeck experiments.

      Left: The Chandra X-ray Observatory in Columbia’s payload bay shortly after reaching orbit. Middle: Chandra raised to the deployment angle. Right: Chandra departs Columbia.
      Coleman had prime responsibility for deploying Chandra. After initial checkout of the telescope by ground teams, the astronauts tilted Chandra and the IUS to an angle of 29 degrees. After additional checks, they tilted it up to the release angle of 58 degrees. A little over seven hours after launch, Coleman deployed the Chandra/IUS stack. Collins and Ashby flew Columbia to a safe distance, and about an hour after deployment, the IUS fired its first stage engine for about two minutes, followed by a two-minute burn of the second stage. This placed Chandra in a temporary elliptical Earth orbit with a high point of 37,200 miles. After separation of the IUS, Chandra used its own propulsion system over the next 10 days to raise its altitude to 6,214 miles by 86,992 miles, its operational orbit, circling the Earth every 64 hours. For the next four days of the mission, the astronauts operated about 20 middeck experiments, including a technology demonstration of a treadmill vibration isolation system planned for the International Space Station.

      Left: Michel A. Tognini works with the Commercial Generic Bioprocessing Apparatus. Middle: Jeffrey S. Ashby checks the status of the Space Tissue Lab experiment. Right: Catherine G. Coleman harvests plants from the Plant Growth in Microgravity experiment.

      Left: Catherine G. Coleman, left, and Michel A. Tognini pose near the Lightweight Flexible Solar Array Hinge technology demonstration experiment. Middle: Stephen A. Hawley checks the status of the Micro Electromechanical Systems experiment. Right: Tognini places samples of the Biological Research in Canisters experiment into a gaseous nitrogen freezer.

      Left: Eileen M. Collins runs on the Treadmill Vibration Isolation System. Middle: Stephen A. Hawley, left, and Michel A. Tognini operate the Southwest Ultraviolet Imaging System instrument. Right: Inflight photograph of the STS-93 crew.

      A selection of the STS-93 crew Earth observation photographs. Left: Laguna Verde in Chile. Middle left: Sunrise over the Mozambique Channel. Middle right: Darling River and lakes in Australia. Right: The Society Islands of Bora Bora, Tahaa, and Raiatea.

      Left: Eileen M. Collins prepares to bring Columbia home. Middle: Columbia streaks through the skies over NASA’s Johnson Space Center in Houston during reentry. Right: Collins guides Columbia to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida.

      Left: Three holes visible in the hydrogen cooling tubes of Columbia’s right main engine, seen after landing. Middle: The STS-93 crew pose in front of Columbia on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: Eileen M. Collins addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-93 crew, as Vice President Albert “Al” A. Gore and other dignitaries listen.
      At the end of five days, the astronauts finished the last of the experiments and prepared for the return to Earth. On July 28, they closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Collins piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing the 12th night landing of the shuttle program. The crew had flown 80 orbits around the Earth in 4 days, 22 hours, and 50 minutes. Columbia wouldn’t fly again until March 2002, the STS-109 Hubble Servicing Mission-3B. A postflight investigation into the cause of the short on ascent that led to two DCUs failing revealed a wire with frayed insulation, likely caused by workers inadvertently stepping on it, that rubbed against a burred screw head that had likely been there since Columbia’s manufacture. The incident resulted in significant changes to ground processes during shuttle inspections and repairs. With regard to the pin ejected during engine ignition that damaged the hydrogen cooling tubes, investigators found that those pins never passed any acceptance testing. Since STS-93 marked the last flight of that generation of main engines, newer engines incorporated a different configuration, requiring no design or other changes.
      Enjoy the crew narrate a video about the STS-93 mission. Read Hawley’s recollections of the STS-93 mission in his oral history with the JSC History Office.
      Explore More
      11 min read 45 Years Ago: Space Shuttle Enterprise Completes Launch Pad Checkout
      Article 9 hours ago 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Article 2 days ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
      Article 1 week ago
      View the full article
    • By NASA
      5 Min Read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      By Rick Smith
      “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future.
      Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos.
      Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.”
      Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since.
      “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.”
      That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts.
      But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing.
      The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period.
      “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988.
      “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.”
      Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope.
      On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.”
      Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment.
      “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways.
      Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago.
      An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said.
      Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.”
      “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.”
      As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://cxc.harvard.edu
      Media Contact:
      Jonathan Deal / Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      jonathan.e.deal@nasa.gov / lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      The barred spiral galaxy NGC 6872 is interacting with a smaller galaxy to the upper left. The smaller galaxy has likely stripped gas from NGC 6872 to feed the supermassive black hole in its center.X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major To commemorate the 25th anniversary of NASA’s Chandra X-ray Observatory launch, the Chandra team released this never-seen-before image of NGC 6872, a spiral galaxy in the Pavo (Peacock) constellation, on July 22, 2024. This image and 24 others, which all include data from Chandra, demonstrate how X-ray astronomy explores all corners of the universe.
      NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy; in 2013, astronomers from the United States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from NASA’s Galaxy Evolution Explorer. This record was surpassed by NGC 262, a galaxy that measures 1.3 million light-years in diameter.
      See more photos released for this celebration.
      Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major
      View the full article
    • By NASA
      NASA/SAO/CXC This montage contains 25 new images with data from NASA’s Chandra X-ray Observatory that is being released to commemorate the telescope’s 25th anniversary in space, as described in our latest press release. Since its launch into space on July 23, 1999, Chandra has been NASA’s flagship mission for X-ray astronomy in its fleet of “Great Observatories.” Chandra discovers exotic new phenomena and examines old mysteries, looking at objects within our own Solar System out to nearly the edge of the observable Universe.
      There is a broad range of astronomical objects in this collection. At the center is one of Chandra’s most iconic targets, the supernova remnant Cassiopeia A (Cas A). This was one of the very first objects observed by Chandra after its launch in 1999, and astronomers have often returned to observe Cas A with Chandra since then.
      Chandra quickly discovered a point source of X-rays in Cas A’s center for the first time, later confirmed to be a neutron star. Later Chandra was used to discover evidence for a “superfluid” inside Cas A’s neutron star, to reveal that the original massive star may have turned inside out as it exploded, and to take an important step in pinpointing how giant stars explode.
      The Cassiopeia A supernova remnant has been observed for more than 2 million seconds since the start of the Chandra mission in 1999. X-rays from Chandra (blue); infrared from Webb (orange, white, and blue)X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (UGent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Major, J. Schmidt and K. Arcand The unmatched sharpness of Chandra’s X-ray images are perfect for studying the hot debris and energetic particles remaining behind after supernova explosions. Other examples in this new collection include the Crab Nebula, G21.5-0.9, MSH 15-52, and SN 1987A. Chandra also probes the different branches of stellar evolution such as “planetary nebulas” when stars like the Sun run out of fuel and shed their outer layers as seen in the Chandra image of HB 5.
      Chandra also looks at what happens at the start of the stellar life cycle, providing information about some of the youngest and most massive stars. Images of these stellar nurseries in the “25 for 25” montage include the Orion Nebula, Cat’s Paw, M16 (a.k.a., the “Pillars of Creation”), the Bat Shadow and NGC 3324. A view of a more mature star cluster, NGC 3532, is also included. X-ray data are particularly useful for studying objects like this because young stars are often copious producers of X-rays, allowing stars that are members of clusters to be picked out of a foreground or background of older objects. Chandra’s sharp images and sensitivity also allow many more sources to be seen.
      This region of star formation contains the Pillars of Creation, which was made famous by the Hubble Space Telescope. Chandra detects X-rays from young stars in the region, including one embedded in a pillar. X-rays from Chandra (red and blue); infrared image from Webb (red, green, and blue)X-ray: NASA/CXO/SAO; Infrared: NASA/ESA/CSA/STScI; Image processing: NASA/CXC/SAO/L. Frattare Chandra observes galaxies — including our own Milky Way, where a supermassive black hole resides at its center. Chandra also studies other galaxies and this is represented in the new images of NGC 7469, Centaurus A, NGC 6872, NGC 1365, and Arp 220.
      Astronomers look at even larger structures like galaxy clusters with Chandra, where hundreds or thousands of galaxies are immersed in multimillion-degree gas that only an X-ray telescope can detect. In this release of images, M86 and the Virgo cluster, Abell 2125, and MACS J0035 are examples of galaxy clusters Chandra has observed.
      Closer to home, Chandra has contributed to the study of planets and comets in our own Solar System including Venus, Mars, Saturn, and even Earth itself. This ability to explore the Solar System is represented by the image of aurora on Jupiter, captured in X-rays, in this collection.
      A full list of the 25 images celebrating Chandra’s 25th, along with the data included and what the colors represent, is available at https://chandra.si.edu/photo/2024/25th/more.html.
      Images of some of these objects had previously been released, but now include new X-ray data or have been combined with different data from other telescopes. Some of these objects have never been released before with Chandra data.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory
      Visual Description:
      This image shows a collection of 25 new space images celebrating the Chandra X-ray Observatory’s 25th anniversary. The images are arranged in a grid, displayed as five images across in five separate rows. Starting from the upper left, and going across each row, the objects imaged are: Crab Nebula, Orion Nebula, The Eyes Galaxies, Cat’s Paw Nebula, Milky Way’s Galactic Center, M16, Bat Shadow, NGC 7469, Virgo Cluster, WR 124, G21.5-0.9, Centaurus A, Cassiopeia A, NGC 3532, NGC 6872, Hb 5, Abell 2125, NGC 3324, NGC 1365, MSH 15-52, Arp 220, Jupiter, NGC 1850, MACS J0035, SN 1987A.
      View the full article
    • By NASA
      Cosmic Road Trip: four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.X-ray: NASA/CXC/SAO; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.
      The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.
      X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.
      X-ray: NASA/CXC/Penn State/E.Fei It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.
      Spiral galaxy NGC 3627.X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.
      ACS J0416 galaxy cluster.X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri) NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description:
      This release features four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid.
      At our lower right is Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.
      At our upper right of the grid is a peek into the heart of the Orion Nebula, which blankets the entire image. Here, the young star nursery resembles a dense, stringy, dusty rose cloud, peppered with thousands of glowing golden, white, and blue stars. Layers of cloud around the edges of the image, and a concentration of bright stars at its distant core, help convey the depth of the nebula.
      In the lower left of the two-by-two grid is a hazy image of a spiral galaxy known as NGC 3627. Here, the galaxy appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.
      At the upper left of the grid is an image of the distant galaxy cluster known as MACS J0416. Here, the blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
  • Check out these Videos

×
×
  • Create New...