Jump to content

Ham Radio in Space: Engaging with Students Worldwide for 40 Years


Recommended Posts

  • Publishers
Posted

5 min read

Ham Radio in Space: Engaging with Students Worldwide for 40 Years

In May 2018, a student at Mill Springs Academy in Alpharetta, Georgia, Andrew Maichle, talked to NASA astronaut Scott Tingle on the International Space Station via amateur or ham radio. The experience profoundly affected Maichle, who went on to study electrical engineering at Clemson University in South Carolina.

“It was so cool to see in real time the utmost levels of what people in science are able to accomplish, and to talk to and interact with someone at that level,” Maichle recalls. “The space station is an incredible work of engineering and to interact with someone in space was just mind-boggling. I was extraordinarily honored and very lucky to have had the opportunity.”

40 Years of Contact

As of November 2023, students have been talking to astronauts in space for 40 years. Crew members on the space shuttle Columbia first used an amateur radio to communicate with people on Earth in 1983. That program, the Shuttle Amateur Radio Experiment (SAREX), ended in 1999.

In October 2000, amateur radio equipment launched to the space station along with its first crew members, who deployed it on Nov. 13, 2000. ISS Ham Radio, also known as Amateur Radio on the International Space Station (ARISS), has operated continuously since then. Each year, the program hosts about a hundred contacts. It has now directly connected over 100 crew members with more than 250,000 participants from 49 U.S. states, 63 countries, and every continent. These experiences encourage interest in science, technology, engineering, and mathematics (STEM) education and help inspire the next generation.

“The ham radio program represents an amazing opportunity to engage with kids all over the world,” said NASA astronaut Kjell Lindgren, who participated on each of his missions. “It provides the opportunity for educators and ham operators to encourage and inspire their students with STEM topics culminating in a real-time conversation with astronauts living and working on the space station.”

Before a scheduled contact, students study related topics. They have about nine minutes to ask questions, often discussing career choices and scientific activities aboard the orbiting laboratory.

Astronaut Kjell Lindgren, wearing a black shirt, faces the control panel of the station’s ham radio set. He is holding a notepad and pen in his right hand and speaking into the microphone in his left hand.
NASA astronaut Kjell Lindgren talks on the space station’s ham radio set.
NASA

Inspiration Beyond Education

These contacts go beyond inspiring students – sometimes they encourage entire communities. Students at Canterbury School in Fort Myers, Florida, spoke with crew members on Oct. 24, 2022. Just a few weeks earlier, Hurricane Ian displaced 30 percent of the school’s population.

“Before the hurricane, our had students spent months building their own satellite tracking antenna,” said Christiana Deeter, science department head at the school. “After the storm, so many people came forward to make sure that we had what we needed. It was a great opportunity for our kids to stop looking around and look up.”

The school spoke with NASA astronaut Josh Cassada. “He has kids of his own and was just as excited as our kids were,” said Deeter. “I asked him if he had a message for the families and he talked about coming together as a community and not giving up hope. Our school was on a high the rest of the year.”

Student Isaac Deeter, wearing an astronaut costume, speaks into a microphone. Samantha Pezzi, wearing a pink dress, her hands in front of her, waits behind him and a student in a blue dress stands behind her. The school auditorium is blurred in the background.
Canterbury School student Isaac Deeter asks a question during the school’s ham radio contact while student Samantha Pezzi waits her turn.
Canterbury School

From an Astronaut’s Perspective

Ham radio also contributes to astronaut well-being. In addition to scheduled contacts, crew members often crank up the radio during free time to catch calls from around the world.

Lindgren spoke to amateur radio operators or “hams” on all seven continents. His favorite memory is connecting with eight-year-old Isabella Payne and her father Matthew Payne in the United Kingdom. “Hearing her young, accented voice cut through the static – I was very impressed to hear her calling the space station,” said Lindgren. “It made my day!”

Lindgren’s contact with Payne was on Aug. 2, 2022. On Aug.18, 2023, Payne’s school, St Peter-In-Thanet CE Primary, conducted a scheduled contact with NASA astronaut Jasmin Moghbeli.

A tablet floats in the space station cupola, the screen displaying Isabella Payne in a NASA t-shirt next to a ham radio control panel and a computer showing the ISS track over the Earth. The cupola windows are behind the tablet.
UK student Isabella Payne, who contacted NASA astronaut Kjell Lindgren via ham radio, is shown on Lindgren’s device floating in the space station.
NASA

The program also fosters international cooperation. Crew members are trained by multi-national teams. Italian teams designed and built antennas, while German teams built repeater stations that improve ham contacts. Amateur radio even serves as an emergency backup communications network for the space station.

How Schools Can Get Involved

ARISS is a partnership between NASA, amateur radio organizations, and international space agencies. While there is no cost to a host location for the contact, there may be some equipment-related costs. Scheduling is subject to mission operations and may change, so hosts need to be flexible.

The astronaut and the ham radio operator, who is the technical point of contact on the ground, must be licensed. While students do not have to be licensed, many choose to obtain their license after the experience.

Information about applying is available at www.ariss.org or can be requested from ariss@arrl.org.

The Next 40 Years

“I hope the program continues for a long time,” said Maichle. “It is so important for kids trying to figure out what you want to accomplish in life. It is cool to have that memory that sticks with you. It inspires so many people.”

And as those involved celebrate 40 years of ham radio in space, some are dreaming even bigger.

“I would love for there to be a continued amateur radio presence in human spaceflight,” said Lindgren. “I expect we’ll have a radio on the space station for as long as it operates. Then can we put a ham radio station on the Moon? Now that would be cool.”


Melissa Gaskill
International Space Station Program Research Office
Johnson Space Center


Search this database of scientific experiments to learn more about those mentioned above. Space Station Research Explorer.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX). NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.
      The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.
      Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.
      “Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”
      A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.
      “Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”
      Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  
      Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.
      Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.
      Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.
      After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.
      Explore More
      2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test
      Article 2 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By Amazing Space
      MUSK Says It's Time To Scarp the Space Station - Why He's Wrong!
    • By European Space Agency
      Image: The varied landscape of England’s Lake District is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
    • By NASA
      To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
      Take a tour through this section of the Cat’s Paw Nebula.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
    • By NASA
      On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde “At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.
      The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
      The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde “Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.
      This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.
      Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Dark Matter Goddard Space Flight Center Goddard Technology NASA Centers & Facilities Technology The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
      Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 4 months ago View the full article
  • Check out these Videos

×
×
  • Create New...