Members Can Post Anonymously On This Site
Hubble Catches Jupiter Changing Its Stripes
-
Similar Topics
-
By NASA
Earth (ESD) Earth Explore Climate Change Science in Action Multimedia Data For Researchers About Us 4 min read
NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing and plant life is responding. This visualization shows average precipitation for the entire globe based on more than 20 years of data from 2000 to 2023. Cooler colors indicate areas that receive less rain. Warm colors receive more rain. NASA’s Scientific Visualization Studio A new NASA-led study has found that how rain falls in a given year is nearly as important to the world’s vegetation as how much. Reporting Dec. 11 in Nature, the researchers showed that even in years with similar rainfall totals, plants fared differently when that water came in fewer, bigger bursts.
In years with less frequent but more concentrated rainfall, plants in drier environments like the U.S. Southwest were more likely to thrive. In humid ecosystems like the Central American rainforest, vegetation tended to fare worse, possibly because it could not tolerate the longer dry spells.
Scientists have previously estimated that almost half of the world’s vegetation is driven primarily by how much rain falls in a year. Less well understood is the role of day-to-day variability, said lead author Andrew Feldman, a hydrologist and ecosystem scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Shifting precipitation patterns are producing stronger rainstorms — with longer dry spells in between — compared to a century ago.
“You can think of it like this: if you have a house plant, what happens if you give it a full pitcher of water on Sunday versus a third of a pitcher on Monday, Wednesday, and Friday?” said Feldman. Scale that to the size of the U.S. Corn Belt or a rainforest and the answer could have implications for crop yields and ultimately how much carbon dioxide plants remove from the atmosphere.
Blooms in Desert
The team, including researchers from the U.S. Department of Agriculture and multiple universities, analyzed two decades of field and satellite observations, spanning millions of square miles. Their study area encompassed diverse landscapes from Siberia to the southern tip of Patagonia.
Yellow wildflowers and orange poppies carpet the desert following a wet winter for the Antelope Valley in California. NASA/Jim Ross They found that plants across 42% of Earth’s vegetated land surface were sensitive to daily rainfall variability. Of those, a little over half fared better — often showing increased growth — in years with fewer but more intense wet days. These include croplands as well as drier landscapes like grasslands and deserts.
In contrast, broadleaf (e.g., oak, maple, and beech) forests and rainforests in lower and middle latitudes tended to fare worse under those conditions. The effect was especially pronounced in Indo-Pacific rainforests, including in the Philippines and Indonesia.
Statistically, daily rainfall variability was nearly as important as annual rainfall totals in driving growth worldwide.
Red Light, Green Light
The new study relied primarily on a suite of NASA missions and datasets, including the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm, which provides rain and snowfall rates for most of the planet every 30 minutes using a network of international satellites.
To gauge plant response day to day, the researchers calculated how green an area appeared in satellite imagery. “Greenness”, also known asthe Normalized Difference Vegetation Index, is commonly used to estimate vegetation density and health. They also tracked a faint reddish light that plants emit during photosynthesis, when a plant absorbs sunlight to convert carbon dioxide and water into food, its chlorophyll “leaks” unused photons. This faint light is called solar-induced fluorescence, and it’s a telltale sign of flourishing vegetation.
Growing plants emit a form of light detectable by NASA satellites orbiting hundreds of miles above Earth. Parts of North America appear to glimmer in this visualization, depicting an average year. Gray indicates regions with little or no fluorescence; red, pink, and white indicate high fluorescence. NASA Scientific Visualization Studio Not visible bythe naked eye, plant fluorescence can be detected by instruments aboard satellites such as NASA’s Orbiting Carbon Observatory-2 (OCO-2). Launched in 2014, OCO-2 has observed the U.S. Midwest fluorescing strongly during the growing season.
Feldman said the findings highlight the vital role that plants play in moving carbon around Earth — a process called the carbon cycle. Vegetation, including crops, forests, and grasslands, forms a vast carbon “sink,” absorbing excess carbon dioxide from the atmosphere.
“A finer understanding of how plants thrive or decline day to day, storm by storm, could help us better understand their role in that critical cycle,” Feldman said.
The study also included researchers from NASA’s Jet Propulsion Laboratory in Southern California, Stanford University, Columbia University, Indiana University, and the University of Arizona.
By Sally Younger
NASA’s Earth Science News Team
About the Author
Sally Younger
Share
Details
Last Updated Dec 11, 2024 Related Terms
Climate Change Earth Water on Earth Explore More
3 min read Annual Science Conference to Highlight NASA Research
Article
5 days ago
6 min read NASA Flights Map Critical Minerals from Skies Above Western US
Technology used to chart other worlds is revealing minerals in the American West that are…
Article
6 days ago
4 min read Expanded AI Model with Global Data Enhances Earth Science Applications
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Explore Earth Science
View the full article
-
By NASA
17 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
On Dec. 8, 1994, NASA announced the selection of its 15th group of astronauts. The diverse group comprised 19 candidates – 10 pilots and nine mission specialists, and included five women, two African Americans, one Asian American, and the first Peruvian-born and Indian-born astronauts. Four international astronauts, one each from Canada and Japan and two from France, joined the group later for astronaut candidate training, following which all 23 became eligible for spaceflight assignment. The two French candidates had previous spaceflight experience in cooperative missions with Russia. All members of the group completed at least one spaceflight, making significant contributions to assembly and maintenance of the space station and carrying out important science missions. Three perished in the Columbia accident.
The Group 15 NASA and international astronaut candidates pose for a group photo – front row, Jeffrey S. Ashby, left, Dafydd “Dave” R. Williams, James F. Reilly, Scott D. Altman, Rick D. Husband, and Michael J. Bloomfield; middle row, Pamela A. Melroy, left, Michael P. Anderson, Michel Tognini, Kathryn “Kay” P. Hire, Kalpana Chawla, Carlos I. Noriega, Susan L. Still, Takao Doi, and Frederick “Rick” W. Sturckow; back row, Janet L. Kavandi, left, Edward T. Lu, Steven K. Robinson, Robert L. Curbeam, Dominic L.P. Gorie, Joe F. Edwards, Steven W. Lindsey, and Jean-Loup Chrétien. Credit: NASA The newest class of NASA astronaut candidates included pilot candidates Scott D. Altman, Jeffrey S. Ashby, Michael J. Bloomfield, Joe F. Edwards, Dominic L.P. Gorie, Rick D. Husband, Steven W. Lindsey, Pamela A. Melroy, Susan L. Still, and Frederick “Rick” W. Sturckow, and mission specialist candidates Michael P. Anderson, Kalpana Chawla, Robert L. Curbeam, Kathryn “Kay” P. Hire, Janet L. Kavandi, Edward T. Lu, Carlos I. Noriega, James F. Reilly, and Steven K. Robinson. A January 1995 agreement among the agencies enabled Canadian Space Agency (CSA) astronaut Dafydd “Dave” R. Williams and Takao Doi of the National Space Development Agency (NASDA), now the Japan Aerospace Exploration Agency, to join the 19 NASA astronauts for training. Another agreement between NASA and the French space agency CNES enabled astronauts Jean-Loup Chrétien and Michel Tognini to also join the group. Both Chrétien and Tognini had previous spaceflight experience through joint agreements with Russia, and their experience proved helpful to NASA in the fledgling Shuttle-Mir Program.
Group 15 astronaut candidates experience short-duration weightlessness aboard NASA’s KC-135 aircraft.Credit: NASA The 19 NASA candidates along with Williams and Doi reported to work at NASA’s Johnson Space Center in Houston on March 6, 1995, to begin their one-year training period. The two French astronauts joined them later. During the yearlong training, the candidates attended classes in applied sciences, space shuttle and space station systems, space medicine, Earth and planetary sciences, and materials sciences. They visited each of the NASA centers to learn about their functions and received instruction in flying the T-38 Talon training aircraft, high-altitude and ground egress systems, survival skills, parasail flight, and scuba. They experienced short-duration weightlessness aboard NASA’s KC-135 aircraft dubbed the Vomit Comet. After completing the astronaut candidate training, they qualified for various technical assignments within the astronaut office leading to assignments to space shuttle crews.
Group 15 astronaut candidates during survival training in Pensacola, Florida.Credit: NASA Group 15 astronaut candidates during survival training in Pensacola, Florida.Credit: NASA The 19 NASA candidates along with Williams and Doi reported to work at NASA’s Johnson Space Center in Houston on March 6, 1995, to begin their one-year training period. The two French astronauts joined them later. During the yearlong training, the candidates attended classes in applied sciences, space shuttle and space station systems, space medicine, Earth and planetary sciences, and materials sciences. They visited each of the NASA centers to learn about their functions and received instruction in flying the T-38 Talon training aircraft, high-altitude and ground egress systems, survival skills, parasail flight, and scuba. They experienced short-duration weightlessness aboard NASA’s KC-135 aircraft dubbed the Vomit Comet. After completing the astronaut candidate training, they qualified for various technical assignments within the astronaut office leading to assignments to space shuttle crews.
Per tradition, the previous astronaut class provided the nickname for Group 15. Originally, The Class of 1992, The Hogs, dubbed them The Snails because NASA had delayed their announcement. Then after the addition of the two French astronauts, they felt that The Flying Escargots seemed more appropriate. The Group 15 patch included an astronaut pin rising from the Earth, an orbiting space shuttle and space station, and flags of the United States, Canada, France, and Japan.
Group 15 patch.Credit: NASA
Altman, a U.S. Navy pilot, hails from Illinois. He received his first spaceflight assignment as pilot of STS-90, the 16-day Neurolab mission in 1998, along with fellow Escargots Hire and Williams. He again served as pilot on STS-106, a 12-day space station resupply mission in 2000, accompanied by fellow Escargot Lu. He served as commander on his third mission, STS-109, the 11-day fourth Hubble Space Telescope (HST) servicing mission in 2002. He commanded his fourth and final mission, the 13-day final HST servicing mission, STS-125, in 2009. Altman logged a total of 51 days in space.
Anderson, a native of upstate New York and a lieutenant colonel in the U.S. Air Force, received his first assignment as a mission specialist on STS-89, the nine-day eighth docking with Mir. Fellow Escargots Edwards and Reilly flew with Anderson, who has the distinction as the only African American astronaut to visit that space station during the mission in 1998. He next served as payload commander on the 16-day STS-107 Spacehab research mission in 2003, flying with fellow Escargots Chawla and Husband. Anderson perished in the Columbia accident. He logged nearly 25 days in space.
Texas native and U.S. Navy captain Ashby received his first spaceflight assignment as pilot of STS-93, the five-day mission in 1999 to deploy the Chandra X-ray Observatory. Fellow Escargot Tognini served as a mission specialist on this flight. On his second mission, Ashby served as pilot of STS-100, the 12-day flight in 2001 that delivered the Canadarm2 robotic arm to the space station. Ashby commanded his third and final mission in 2002, STS-112, the 11-day space station assembly flight that delivered the S1 truss. Fellow Escargot Melroy served as pilot on this flight. During his three missions, Ashby spent nearly 28 days in space.
Hailing from Michigan, U.S. Air Force Colonel Bloomfield received his first flight assignment as pilot of STS-86, the seventh Mir docking mission. The 11-day flight took place in 1997, with fellow Escargot Chrétien serving as a mission specialist. Bloomfield served as pilot on his second flight, STS-97, the 11-day station assembly mission in 2000 that delivered the P6 truss and the first set of U.S. solar arrays. Fellow Escargot Noriega flew as a mission specialist on this flight. Bloomfield served as commander on his third and final mission, the 11-day STS-110 assembly flight that delivered the S0 truss segment in 2002. Bloomfield logged a total of 32 days in space across his three missions.
Chawla, the first Indian-born NASA astronaut, earned a doctorate in aerospace engineering. She received her first spaceflight assignment as a mission specialist on STS-87, the 16-day flight in 1997 that carried the fourth U.S. Microgravity Payload (USMP-4). Fellow Escargot Lindsey served as pilot on this mission, during which Chawla used the shuttle’s robotic arm to release and capture the SPARTAN-201-4 free flyer. She next served as a mission specialist on the STS-107 Spacehab research mission in 2003, along with fellow Escargots Anderson and Husband. Chawla perished in the Columbia accident. She logged nearly 32 days in space.
On his first spaceflight, Curbeam, a native of Baltimore and commander in the U.S. Navy, flew as a mission specialist on STS-85, a 12-day mission in 1997 that carried the CRISTA-SPAS-2 free flyer. Fellow Escargot Robinson accompanied Curbeam on this mission. On his next flight, he served as a mission specialist on STS-98, the 2001 station assembly flight that delivered the Destiny U.S. Lab. During that 13-day flight, Curbeam participated in three spacewalks, spending nearly 20 hours outside. On his third and final spaceflight, he served as a mission specialist on STS-116, the 13-day assembly flight in 2006 that delivered the P5 truss segment. Curbeam participated in four spacewalks to reconfigure the station’s power system, spending nearly 26 hours outside. Across his four flights, Curbeam spent more than 37 days in space, and across his seven spacewalks more than 45 hours outside.
Edwards, a native of Virginia and U.S. Navy commander, flew his single spaceflight as pilot of STS-89, the eighth Mir docking mission in 1998. Fellow Escargots Anderson and Reilly flew with him as mission specialists on this flight. Edwards spent nine days in space.
A native of Louisiana and U.S. Navy captain, Gorie received his first spaceflight assignment as pilot of STS-91, the 10-day ninth and final Mir docking mission in 1998, along with fellow Escargot Kavandi. In 2000, he served as pilot of STS-99, the 11-day Shuttle Radar Topography Mission (SRTM), once again with fellow Escargot Kavandi. Gorie commanded his third mission, STS-108 in 2001, the first station Utilization Flight that lasted 12 days. He also commanded his fourth and final flight, accompanied by fellow Escargot Doi, the 16-day STS-123 mission in 2008 that delivered the Japanese pressurized logistics module and the Canadian Special Purpose Dexterous Manipulator (SPDM) to the station. Over his four missions, Gorie spent more than 48 days in space.
A native of Alabama and a captain in the U.S. Navy Reserve, Hire completed her first space mission in 1998 as a mission specialist on the 16-day STS-90 Neurolab mission, along with fellow Escargots Altman and Williams. Twelve years later, Hire flew her second and last mission, STS-130, a 14-day space station assembly mission that installed the Node 3 Tranquility module and the Cupola. During her two flights, Hire spent nearly 30 days in space.
Hailing from Amarillo, Texas, and a colonel in the U.S. Air Force, Husband flew as the pilot of STS-96 on his first flight. The 10-day space station resupply mission took place in 1999. He served as commander on his second flight, the 16-day STS-107 Spacehab research mission in 2003, along with fellow Escargots Anderson and Chawla. Husband perished in the Columbia accident. He logged nearly 26 days in space.
Missouri native Kavandi completed her first spaceflight as a mission specialist on STS-91, the 10-day ninth and final Mir docking mission in 1998, along with fellow Escargot Gorie. On her second flight, she served as a mission specialist on the 11-day STS-99 SRTM in 2000, once again with fellow Escargot Gorie. As a mission specialist on STS-104, her third and final spaceflight, Kavandi flew with fellow Escargots Lindsey and Reilly to install the Quest airlock on the station. On her three flights, she logged 34 days in space. Kavandi served as director of NASA’s Glenn Research Center in Cleveland from March 2016 to September 2019.
A colonel in the U.S. Air Force, California-born Lindsey has the distinction as the only member of his class to complete five spaceflights. He served as pilot on his first spaceflight in 1997, the 16-day STS-87 USMP-4 mission, joined by fellow Escargots Chawla and Doi. He flew as pilot on his second mission in 1998, the nine-day STS-95 mission that saw astronaut John H. Glenn return to space. Fellow Escargot Robinson joined Lindsey on this mission. He commanded his third spaceflight, the 13-day STS-104 mission in 2001 that delivered the Quest airlock to the space station. Fellow Escargots Kavandi and Reilly accompanied Lindsey on this flight. He served as commander of his fourth trip into space in 2006, the 13-day STS-121 second return to flight mission after the Columbia accident that also returned the station to a 3-person crew. For his fifth and final space mission in 2011, Lindsey once again served as commander, of STS-133, the 39th and final flight of space shuttle Discovery. The fifth Utilization and Logistics Flight delivered the Permanent Multipurpose Module and the third of four EXPRESS Logistics Carriers to the space station. Lindsey’s flight on STS-133 marked the last flight by a Flying Escargot. Across his five missions, Lindsey logged nearly 63 days in space.
Born in Massachusetts, Lu earned a doctorate in applied physics. He received his first spaceflight assignment as a mission specialist on the nine-day STS-84 flight in 1997, the sixth Mir docking mission. Fellow Escargot Noriega accompanied him on the flight. On his second trip into space, Lu served as mission specialist on STS-106, a 12-day station resupply mission in 2000. He participated in a six-hour spacewalk to complete electrical connections between two of the station’s modules. Fellow Escargot Altman flew with Lu on this mission. On his third mission, Lu served as flight engineer of Expedition 7, spending 185 days in space in 2003, the only Escargot to complete a long-duration mission. He logged 206 days in space during his three spaceflights.
California native Melroy, a colonel in the U.S. Air Force, received her first flight assignment as pilot of STS-92, the 13-day space station assembly flight in 2000 that delivered the Z1 truss. She served as pilot on her second mission, STS-112, the 11-day flight that brought the S1 truss to the station in 2002. Fellow Escargot Ashby commanded this mission. On her third and final mission in 2007, she served as commander of STS-120, the 15-day assembly flight that brought the Harmony Node 2 module to the station. After hatch opening, space station commander Peggy A. Whitson greeted Melroy, highlighting the first time that women commanded both spacecraft. She accumulated nearly 39 days in space during her three missions. Melroy has served as NASA’s deputy administrator since June 2021.
Noriega has the distinction as the first Peruvian-born astronaut, and served as a lieutenant colonel in the U.S. Marine Corps. For his first spaceflight, he served as a mission specialist, along with fellow Escargot Lu, on STS-84, the nine-day sixth Mir docking mission in 1997. On his second and final mission, Noriega served as a mission specialist on STS-97, the 11-day assembly flight in 2000 that delivered the P6 truss and the first set of U.S. solar arrays to the space station. He participated in three spacewalks, spending more than 19 hours outside. Fellow Escargot Bloomfield served as pilot on this mission. Across his two flights, Noriega accumulated 20 days in space.
Born in Idaho, Reilly earned a doctorate in geosciences. He received his first spaceflight assignment as a mission specialist on STS-89, the nine-day eighth Mir docking mission in 1998. Fellow Escargots Edwards and Anderson joined him on this mission. On his second trip to space, Reilly served as a mission specialist on STS-104, the assembly flight to install the Quest airlock on the station. Reilly participated in three spacewalks, including the first one staged from the Quest airlock, totaling 15 and a half hours. Fellow Escargots Lindsey and Kavandi accompanied Reilly on this mission. On his third and final spaceflight, Reilley flew as a mission specialist on STS-117, the 14-day flight in 2007 that delivered the S3/S4 truss segment to the station. Reilly participated in two of the mission’s spacewalks, spending more than 13 hours outside. Fellow Escargot Sturckow served as commander on this mission. Across his three spaceflights, Reilly logged more than 35 days in space and spent nearly 29 hours outside on five spacewalks.
California native Robinson earned a doctorate in mechanical engineering. On his first spaceflight, he flew, along with fellow Escargot Curbeam, as a mission specialist on STS-85, a 12-day mission in 1997 that carried the CRISTA-SPAS-2 free flyer. On his second trip into space, he served as a mission specialist on STS-95, commanded by fellow Escargot Lindsey, the nine-day mission in 1998 that saw astronaut John H. Glenn return to space. In 2005, Robinson flew for a third time on STS-114, the 14-day return to flight mission after the Columbia accident. He participated in three spacewalks totaling 20 hours. He flew as a mission specialist on STS-130, his fourth and final spaceflight, in 2010. Fellow Escargot Hire accompanied him on the 14-day mission that brought the Tranquility Node 3 module and the Cupola to the station. Robinson logged 48 days in space across his four missions.
Born in Georgia, and a commander in the U.S. Navy, Still received her first spaceflight assignment as pilot for STS-83, the Microgravity Sciences Laboratory (MSL) mission in 1997. She has the distinction as the first of her class to reach space. When a fuel cell problem cut the planned 16-day mission short after four days, NASA decided to refly the mission and its crew. Still returned to space as pilot of STS-94, the MSL reflight, later in 1997, and flew the full duration 16 days. She logged a total of 20 days in space.
California native and a colonel in the U.S. Marine Corps, Sturckow received his first spaceflight assignment as pilot of STS-88, the 12-day mission in 1998 that launched the Node 1 Unity module to begin assembly of the space station. He again served as pilot on his second spaceflight, STS-105 in 2001, a 12-day station assembly, resupply, and crew rotation mission. Sturckow served as commander on his third mission, the 14-day STS-117 mission in 2007 that delivered the S3/S4 truss segment to the station. Fellow Escargot Reilly accompanied Sturckow on this mission. He once again served as commander on his fourth and final spaceflight, STS-128, the 14-day flight in 2009 that brought facilities to the station to enable a six-person permanent crew. He logged more than 51 days in space on his four missions.
Born in La Rochelle, France, Chrétien rose to the rank of brigadier general in the French Air Force. Selected as an astronaut by CNES in 1980, Chrétien made his first spaceflight in 1982, an eight-day mission aboard the Soviet Salyut-7 space station, the first non-Soviet and non-American to reach space. Chrétien returned to space in 1988, completing a 25-day mission aboard Mir during which he participated in a six-hour spacewalk, the first non-Soviet and non-American to do so. Under a special agreement between NASA and CNES, Chrétien and Tognini joined the Group 15 astronauts for training, making them eligible for flights on the shuttle. For his third and final spaceflight, Chrétien served as a mission specialist on the 11-day STS-86 seventh Mir docking mission in 1997. Fellow Escargot Bloomfield served as pilot on this mission. Across his three flights, Chrétien logged more than 43 days in space.
Tokyo native Doi earned a doctorate in aerospace engineering. NASDA selected him as an astronaut in 1985 and through an agreement with NASA, he joined the Group 15 astronauts for training, making him eligible for flights on the space shuttle. On his first spaceflight, he flew as a mission specialist on STS-87, accompanied by fellow Escargots Lindsey and Chawla. The 16-day mission in 1997 carried the USMP-4 suite of experiments. Doi participated in two spacewalks, spending more than 15 hours outside the shuttle. For his second and final spaceflight, Doi flew as a mission specialist on STS-123, the 16-day assembly flight in 2008 that delivered the Japanese pressurized logistics module and the SPDM to the station. Fellow Escargot Gorie served as commander on this mission. Doi logged more than 31 days in space on his two missions.
The French space agency CNES selected Tognini, born in Vincennes, France, in 1985. He rose to the rank of brigadier general in the French Air Force. He received his first assignment as Chrétien’s backup for his 1988 mission to Mir. For his first spaceflight, Tognini spent 14 days aboard Mir in 1992. Under a special agreement between NASA and CNES, Tognini and Chrétien joined the Group 15 astronauts for training, making them eligible for flights on the shuttle. For his second spaceflight, Tognini served as a mission specialist on STS-93, the five-day mission in 1999 to deploy the Chandra X-ray Observatory. Fellow Escargot Ashby served as pilot on this mission. Tognini logged nearly 19 days in space.
Born in Saskatoon, Saskatchewan, Williams earned a medical degree. The CSA selected him as an astronaut in 1992, and in January 1995, as part of an agreement between NASA and the CSA, he joined the Group 15 astronauts for training, making him eligible for flights on the space shuttle. His first spaceflight took place in 1998 as a mission specialist on the 16-day STS-90 Neurolab mission, under the command of fellow Escargot Altman. For his second trip into space, he served as a mission specialist on STS-118, the 13-day assembly flight in 2007 that delivered the S5 truss segment to the space station. Williams participated in three of the mission’s four spacewalks, spending nearly 18 hours outside. Across his two missions, he spent nearly 29 days in space.
Summary of spaceflights by Group 15 astronauts. Jean-Loup Chrétien completed two earlier missions, to Salyut-7 in 1982 and to Mir in 1988, while Tognini completed one earlier mission to Mir in 1992. Credit: NASA The Group 15 NASA and international astronauts made significant contributions to spaceflight. As a group, they completed 64 flights spending 888 days, or nearly two and a half years, in space, including the three flights Chrétien and Tognini completed before their addition to the group. One Flying Escargot made a single trip into space, nine made two trips, eight made three, four made four, and one went five times. Seventeen of the 23 participated in the assembly, research, maintenance, logistics, and management of the space station. In preparation for space station operations, ten group members visited Mir, and seven visited both space stations, but only one completed a long-duration flight. Twelve contributed their talents on Spacelab or other research missions, and three performed work with the great observatories Hubble and Chandra. Eight of the 23 performed 25 spacewalks spending 161 hours, or more than six days, outside their spacecraft.
About the Author
Dominique V. Crespo
Share
Details
Last Updated Dec 09, 2024 Related Terms
NASA History Astronauts Former Astronauts People of NASA Explore More
7 min read 2024 Be An Astronaut Campaign
Article 7 hours ago 6 min read 10 Years Ago: Orion Flies its First Mission
Article 4 days ago 3 min read Matt Dominick’s X Account: A Visual Journey from Space
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When it comes to NASA’s ASTRO CAMP®, the numbers – and impact – of the initiative to help students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics) just continue to grow and grow and grow.
As in recent years, the NASA ASTRO CAMP® Community Partners (ACCP) program surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. Participants included students from various population segments, focusing on students from underrepresented groups, accessibility for differently-abled students, and reaching under-resourced urban and rural settings.
“This year has been extremely impactful for the students at ACCP collaborating partner sites,” said Kelly Martin-Rivers, principal investigator for NASA’s ACCP. “A particular highlight was being a part of NASA’s focus on the solar eclipses of 2024, supporting over 42,000 students at 52 NASA ACCP events. Supporting more and more exciting research and activities by the Science Activation grantees and Globe citizen scientists also continues to bring hands-on experiences directly to students across the country and around the world.”
NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® In the most recent year, the NASA ACCP partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine. Overall, almost 150,000 students took part in the program, a 30% increase from fiscal year 2023. In addition, almost 107,000 students took part in special STEM activities, an increase of 43.6% from the previous year’s total of more than 74,000. ACCP trained 1,454 facilitators during Educator Professional Development sessions as well, representing an increase of 25.3% from the prior year.
Taken together, the total NASA ACCP impact exceeded a quarter of a million (257,765) people.
As part of the NASA Science Mission Directorate Science Activation program, ACCP continues to make strides in bridging disparities and breaking barriers in STEM. Demographically, the initiative reached a range of ethnic and multiethnic groups. One-third of participants were African American, with another 13% identified as Hispanic. Participants were almost equally divided between male (52%) and female (48%).
In terms of age, 38% of participants were elementary school students. Another 30% were middle school aged, with the remaining 38% high school students. In a final breakdown, more than 42,000 of the participants were impacted during 52 NASA ACCP solar eclipse events in the spring of 2024.
ACCP activities offer real-world opportunities for students to enhance scientific understanding and contribute to NASA science missions, while also inspiring lifelong learning. The ACCP theme was “NASA Science … Fire to Water to Ice and Beyond!” The program featured materials and activities related to NASA science missions, astrophysics, heliophysics, Earth science, and planetary science.
The unique methodology teaches students to work collaboratively to complete missions and provides trained community educators to implement the themed NASA modules, developed by the ACCP team, seated at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
ASTRO CAMP began at NASA Stennis as a single one-week camp in the 1990s. Since then, it has developed into several adaptable models for schools, museums, universities, libraries, and youth service organizations, enabling a worldwide expansion.
For more information about becoming a NASA ASTRO CAMP Collaborative Community Partner, contact: Kelly Martin-Rivers at kelly.e.martin-rivers@nasa.gov or 228-688-1500; or Maria Lott at maria.l.lott@nasa.gov or 228-688-1776.
For more on the ASTRO CAMP Collaborative Community Partner Program, visit:
https://www.nasa.gov/stennis/stem-engagement-at-stennis/nasa-accp/.
Share
Details
Last Updated Dec 06, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
4 min read Lagniappe for December 2024
Article 2 days ago 5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 3 weeks ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 3 weeks ago View the full article
-
By NASA
Hubble Space Telescope Home Hubble Spots a Spiral in the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
Hubble Spots a Spiral in the Celestial River
This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1637. ESA/Hubble & NASA, D. Thilker The subject of this NASA/ESA Hubble Space Telescope image is NGC 1637, a spiral galaxy located 38 million light-years from Earth in the constellation Eridanus, the River.
This image comes from an observing program dedicated to studying star formation in nearby galaxies. Stars form in cold, dusty gas clouds that collapse under their own gravity. As young stars grow, they heat their nurseries through starlight, winds, and powerful outflows. Together, these factors play a role in controlling the rate at which future generations of stars form.
NGC 1637 holds evidence of star formation scattered throughout its disk, if you know where to look. The galaxy’s spiral arms have pockets of pink clouds, many with bright blue stars. The pinkish color comes from hydrogen atoms excited by ultraviolet light from young, massive stars forming within the clouds. This contrasts with the warm yellow glow of the galaxy’s center, which is home to a densely packed collection of older, redder stars.
The stars that set their cloudy birthplaces aglow are comparatively short-lived, and many of these stars will explode as supernovae just a few million years after they’re born. In 1999, NGC 1637 played host to a supernova named SN 1999EM, lauded as the brightest supernova seen that year. When a massive star expires as a supernova, the explosion outshines its entire home galaxy for a short time. While a supernova marks the end of a star’s life, it can also jump start the formation of new stars by compressing nearby clouds of gas, beginning the stellar lifecycle anew.
Explore More
Hubble’s Galaxies
Exploring the Birth of Stars
Homing in on Cosmic Explosions
Hubble’s Nebulae
Hubble Focus E-Book: Galaxies through Space and Time
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars Supernovae View the full article
-
By NASA
A new American human-rated spacecraft made its first foray into space on Dec. 5, 2014. Under contract to NASA, Lockheed Martin builds Orion as the vehicle to take American astronauts back to the Moon and eventually beyond. Orion’s overall shape harkens back to the Apollo Command and Service Modules, but using today’s technology is a larger and far more capable vehicle for NASA’s Artemis Program.
Orion’s first mission, called Engineering Flight Test-1 (EFT-1), used a Delta-IV Heavy booster, at the time the most powerful operational rocket. The 4.5-hour mission demonstrated Orion’s space-worthiness, tested the spacecraft’s heat shield during reentry into the Earth’s atmosphere, and proved the capsule’s recovery systems. Although the EFT-1 mission didn’t include a crew, the Orion capsule flew higher and faster than any human-rated spacecraft in more than 40 years.
The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop, lifts off from Cape Canaveral Air Force Station’s Space Launch Complex 37B in Florida.NASA/Bill Ingalls At 7:05 a.m. EST on Dec. 5, 2014, the three-core first stage of the Delta-IV Heavy rocket ignited, lifting the Orion spacecraft off from Launch Complex 37B at Cape Canaveral Air Force, now Space Force, Station (CCAFS) in Florida to begin the EFT-1 mission. Three minutes and fifty-eight seconds after liftoff, the two side boosters separated as the center core continued firing for another 93 seconds. The second stage ignited thirteen seconds after separation to begin the first of three planned burns. During the first burn, the Service Module’s protective fairing separated, followed by the Launch Abort System. Lasting about 11 and a half minutes, this first burn of the second stage placed the spacecraft into a preliminary 115-by-552-mile parking orbit. While completing one revolution around the Earth, controllers in Mission Control at NASA’s Johnson Space Center in Houston, led by Flight Director Michael L. Sarafin, verified the functioning of the spacecraft’s systems. The second stage ignited a second time, firing for 4 minutes and 42 seconds to raise Orion’s apogee or high point above the Earth to 3,600 miles. During the coast to apogee, Orion remained attached to the second stage and completed its first crossing through the inner Van Allen radiation belt.
Mission Control at NASA’s Johnson Space Center in Houston, Texas during the EFT-1 mission.NASA/Mark Sowa Three hours and five minutes after launch, Orion reached its apogee and began its descent back toward Earth, separating from the second stage about 18 minutes later. The second stage conducted a one-minute disposal burn to ensure it didn’t interfere with the spacecraft’s trajectory. During the passage back through the Van Allen belt, Orion fired its thrusters for 10 seconds to adjust its course for reentry. At an altitude of 400,000 feet, the spacecraft encountered the first tendrils of the Earth’s atmosphere at a point called Entry Interface, traveling at 20,000 miles per hour (mph). A buildup of ionized gases caused by the reentry heating resulted in a communications blackout with Orion for about two and a half minutes. The spacecraft experienced maximum heating of about 4,000 degrees Fahrenheit, proving the worthiness of the heat shield. After release of Orion’s forward bay cover, two drogue parachutes deployed to slow and stabilize the spacecraft. Next followed deployment of the three main parachutes that slowed the spacecraft to 20 mph. Splashdown occurred 4 hours and 24 minutes after launch about 600 miles southwest of San Diego, California. A video of the Orion EFT-1 mission can be viewed here.
Crew module splashing down during EFT-1 in the Pacific ocean.NASA Standing by to recover the Orion capsule, U.S. Navy Divers assigned to Explosive Ordnance Disposal Mobile Unit 11 and Fleet Combat Camera Pacific and crew members from amphibious transport dock U.S.S. Anchorage (LPD-23) stepped into action, first placing a flotation collar around the spacecraft. After securing a tow line to the capsule, the sailors towed it aboard the amphibious well deck of Anchorage, which set sail for Naval Base San Diego arriving there on Dec 8. Engineers from NASA and Lockheed Martin conducted a preliminary inspection of the spacecraft during the cruise to San Diego and found that it survived its trip into space in excellent condition.
U.S. Navy divers approach the Orion capsule during recovery operations. U.S. Navy The Orion EFT-1 mission met all its objectives and received many accolades. “Today was a great day for America,” said Flight Director Sarafin from his console at Mission Control. “It is hard to have a better day than today,” said Mark S. Geyer, Orion program manager. “We’re already working on the next capsule,” said W. Michael “Mike” Hawes, Lockheed Martin’s Orion program manager, adding, “We’ll learn a tremendous amount from what we did today.” NASA Associate Administrator for Human Exploration and Operations William H. Gerstenmaier praised all personnel involved with the EFT-1 mission, “What a tremendous team effort.” NASA Administrator Charles F. Bolden summarized his thoughts about the mission, “Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space.”
Former NASA Administrator Charles F. Bolden inspects Orion EFT-1 capsule at NASA’s Kennedy Space Center in Florida.NASA After its arrival at Naval Base San Diego, workers placed the Orion capsule aboard a truck that delivered it to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 18. After engineers conducted a thorough inspection of the spacecraft at KSC, workers trucked it to the Lockheed Martin facility in Littleton, Colorado, where it arrived on Sept. 1, 2015. Engineers completed final inspections and decontamination of the vehicle. The KSC Visitor Complex has the capsule on display.
The Orion capsule during the Artemis I mission, with the Moon and Earth in the background. NASA The next time an Orion spacecraft flew in space during the Artemis I mission, the Space Launch System (SLS) carried it into orbit after launch from KSC’s Launch Complex 39B. The thunderous night launch took place on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I provided a foundation for human deep space exploration and demonstrated our commitment and capability to extend human existence to the Moon and beyond. The uncrewed Orion spacecraft spent 25.5 days in space, including 6 days in a retrograde orbit around the Moon, concluding with a splashdown in the Pacific Ocean on Dec. 11, exactly 50 years after the Apollo 17 Moon landing.
The Artemis II crew poses in front of the Orion capsule at NASA’s Kennedy Space Center in Florida.NASA/Kim Shiflett On April 3, 2023, NASA named the four-person crew for the Artemis II mission, the first flight to take humans beyond low Earth orbit since Apollo 17 in December 1972. The crew includes NASA astronauts G. Reid Wiseman as commander, Victor J. Glover as pilot, and Christina H. Koch as a mission specialist as well as Canadian Space Agency astronaut Jeremy R. Hansen as the other mission specialist. The four will take an Orion spacecraft on a 10-day journey around the Moon to human rate the spacecraft and SLS.
Interested in learning more about the Artemis Program? Go to https://www.nasa.gov/humans-in-space/artemis/
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.