Jump to content

LIVE Starship 2nd Test Flight


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Next Generation NASA Technologies Tested in Flight
      Erin Rezich, Ian Haskin, QuynhGiao Nguyen, Jason Hill (Zero-G staff), and George Butt experience Lunar gravity while running test operations on the UBER payload. Credits: Zero-G Teams of NASA researchers put their next-generation technologies to the microgravity test in a series of parabolic flights that aim to advance innovations supporting the agency’s space exploration goals.
      These parabolic flights provide a gateway to weightlessness, allowing research teams to interact with their hardware in reduced gravity conditions for intervals of approximately 22 seconds. The flights, which ran from February to April, took place aboard Zero Gravity Corporation’s G-FORCE ONE aircraft and helped to advance several promising space technologies.

      Under the Fundamental Regolith Properties, Handling, and Water Capture (FLEET) project, researchers tested an ultrasonic blade technology in a regolith simulant at lunar and Martian gravities. On Earth, vibratory tools reduce the forces between the tool and the soil, which also lowers the reaction forces experienced by the system. Such reductions indicate the potential for mass savings for tool systems used in space. 
      This flight test aims to establish the magnitude of force reduction achieved by an ultrasonic tool on the Moon and Mars. Regolith interaction, including excavation, will be important to NASA’s resources to support long-duration lunar and Martian missions.
      This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec.
      Erin Rezich
      Project Principal Investigator
      “This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec. It was a NASA bucket list item for me to conduct a parabolic flight experiment, and it was even more special to do it for my doctoral thesis work. I’m very proud of my team and everyone’s effort to make this a reality,” said Erin Rezich, project principal investigator at NASA’s Glenn Research Center in Cleveland, Ohio. 
      The FLEET project also has a separate payload planned for a future flight test on a suborbital rocket. The Vibratory Lunar Regolith Conveyor will demonstrate a granular material (regolith) transport system to study the vertical transport of lunar regolith simulants (soil) in a vacuum under a reduced gravity environment.
      These two FLEET payloads increase the understanding of excavation behavior and how the excavated soil will be transported in a reduced gravity environment.
      QuynhGiao Nguyen takes experiment notes while Pierre-Lucas Aubin-Fournier and George Butt oversee experiment operations during a soil reset period between parabolas.Zero-G 3D Printed Technologies Take on Microgravity 

      Under the agency’s On-Demand Manufacturing of Electronics (ODME) project, researchers tested 3D printing technologies to ease the use of electronics and tools aboard the International Space Station.

      Flying its first microgravity environment test, the ODME Advanced Toolplate team evaluated a new set of substantially smaller 3D printed tools that provide more capabilities and reduce tool changeouts. The toolplate offers eight swappable toolheads so that new technologies can be integrated after it is sent up to the space station. The 3D printer component enables in-space manufacturing of electronics and sensors for structural and crew-monitoring systems and multi-material 3D printing of metals.
      “The development of these critical 3D printing technologies for microelectronics and semiconductors will advance the technology readiness of these processes and reduce the risk for planned future orbital demonstrations on the International Space Station.
      curtis hill
      ODME Project Principal Investigator
      Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA researchers tested another 3D printing technology developed under the agency’s ODME project for manufacturing flexible electronics in space. The Space Enabled Advanced Devices and Semiconductors team is developing electrohydrodynamic inkjet printer technology for semiconductor device manufacturing aboard the space station. The printer will allow for printing electronics and semiconductors with a single development cartridge, which could be updated in the future for various materials systems.
      (Left to right) Paul Deffenbaugh (Sciperio), Cadré Francis (NASA MSFC), Christopher Roberts (NASA MSFC), Connor Whitley (Sciperio), and Tanner Corby (Redwire Space Technologies) operate the On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer in zero gravity to demonstrate the potential capability of electronics manufacturing in space.Zero-G The On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer mills a Fused Deposition Modeling (FDM) printed plastic substrate surface smooth in preparation for the further printing of electronic traces. Conducting this study in zero gravity allowed for analysis of Foreign Object Debris (FOD) capture created during milling.Zero-G Left to Right: Rayne Wolfe and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA’s Flight Opportunities program supported testing various technologies in a series of parabolic flights earlier this year. These technologies are managed under NASA’s Game Changing Development program within the Space Technology Mission Directorate. Space Enabled Advanced Devices and Semiconductors technology collaborators included Intel Corp., Tokyo Electron America, the University of Wisconsin-Madison, Arizona State University, and Iowa State University. The Space Operations Mission Directorate’s In-Space Production Applications also supports this technology. Advanced Toolplate Technology collaborated with Redwire and Sciperio. The Ultrasonic Blade technology is a partnership with NASA’s Glenn Research Center in Cleveland, Ohio, and Concordia University in Montreal, Quebec, through an International Space Act Agreement.

      For more information about the Game Changing Development program, visit: nasa.gov/stmd-game-changing-development/

      For more information about the Flight Opportunities program, visit: nasa.gov/stmd-flight-opportunities/ 
      Testing In-Space Manufacturing Techs and More in Flight Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Jun 20, 2024 EditorIvry Artis Related Terms
      Game Changing Development Program Flight Opportunities Program Space Technology Mission Directorate Explore More
      3 min read NSTGRO 2024
      Article 7 days ago 3 min read NASA’s RASC-AL Competition Selects 2024 Winners  
      Article 7 days ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Game Changing Development
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Glenn Research Center
      View the full article
    • By Space Force
      Students from the Space Test Course at the U.S. Air Force Test Pilot School successfully operated a satellite in space from Edwards Air Force Base.

      View the full article
    • By European Space Agency
      Image: Moving the Ariane 6 upper part to the launch pad for first flight View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
    • By Amazing Space
      To The Stars - A Tribute To Starship and Test Flight 42
  • Check out these Videos

×
×
  • Create New...