Jump to content

2022 SaSa Graduate Student Mentors


Recommended Posts

  • Publishers
Posted

3 min read

2022 SaSa Graduate Student Mentors

sasa-gm-cover-image.png?w=1643

Emily Faber

Emily is an Atmospheric Physics Ph.D. student at the University of Maryland, Baltimore County. She is finishing her 3rd year and works in the Laboratory for Atmospheric Studies and Particle Light Interaction under the guidance of Dr. Adriana Rocha Lima. She is interested in improving the physical parameterization of climate models through a better understanding of physical processes that drive the climate. Her thesis work sits in the space between physical measurements and climate modeling and seeks to improve the physical parameterization of surface wind speed and aerosolized dust, which is part of the general goal of improving aerosol physics parameterization in global climate models.

She also enjoys advocating for women and underrepresented students in STEM and in her free time, you’ll find her exploring everything Maryland and D.C. have to offer or learning new roller-skating tricks.

Alicia Hoffman

Alicia is a 3rd year Ph.D. student at the University of Wisconsin – Madison in the Atmospheric and Oceanic Sciences department working with Dr. Tracey Holloway. In her research, she uses the Community Multiscale Air Quality (CMAQ) model to understand how nighttime N2O5 chemistry impacts daytime ozone concentration and particle composition. Both ozone and PM2.5 are important aspects of air quality to study because of their impacts on human health and the environment.

Prior to attending UW Madison, she worked with Dr. Don Blake at University of California – Irvine studying landfill emissions for her Master of Science (M.S). She earned her Bachelor of Science (B.S) in Chemistry and Anthropology from Beloit College.

Kylie Hoffman

Kylie Hoffman is a fourth-year graduate student at the University of Maryland, Baltimore County. She earned her undergraduate degree in Meteorology in 2017 and is currently working towards her Ph.D. in Atmospheric Physics. Kylie’s current research interests include working with active and passive remote sensing observations to analyze the lowest layer of the atmosphere, the Planetary Boundary Layer (PBL).

Her thesis topic is investigating the influence of converging air masses on PBL dynamics and thermodynamics in the Southern Great Plains region to improve the prediction of thunderstorms.

David Moore

David is currently a first-year Ph.D. student at the University of California, Los Angeles (UCLA), with a concentration in tropical cyclogenesis on terrestrial and aqua-covered exoplanets. In Spring 2021, he earned his bachelor’s degree in Atmospheric Science at the University at Albany, SUNY. 

Fun Fact: Before he joined SaSa, he was previously a NASA Student Airborne Research Program (SARP) student during Summer 2020 (Go AeroSOULS!).

Maurice Roots

Maurice is pursuing a Ph.D. in Atmospheric Physics from the University of Maryland, Baltimore County. His research focuses on using observational datasets to study air pollution in coastal regions. He works with remote sensing instruments, like LIDAR (Light Detection and Ranging) and Spectrometers, as well as in-situ instruments, like Sondes and Air Samplers, to better understand how concentrations of pollutants like ozone and nitrogen dioxide change in location and time.

He also uses Python for data analysis and tool development.

Share

Details

Last Updated
Nov 17, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      By Beth Ridgeway 
      NASA’s Student Launch competition celebrated its 25th anniversary on May 4, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, bringing together more than 980 middle school, high school, college, and university students from across the U.S. to showcase and launch their high-powered rocketry designs.
      The event marked the conclusion of the nine-month challenge where teams designed, built, and launched more than 50 rockets carrying scientific payloads—trying to achieve altitudes between 4,000 and 6,000 feet before executing a successful landing and payload mission.
      “This is really about mirroring the NASA engineering design process,” Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region, said. “It gives students hands-on experience not only in building and designing hardware, but in the review and testing process.  We are helping to prepare and inspire students to get out of classroom and into the aerospace industry as a capable and energizing part of our future workforce.”
      NASA announced James Madison University as the overall winner of the agency’s 2025 Student Launch challenge, followed by North Carolina State University, and The University of Alabama in Huntsville. A complete list of challenge winners can be found on the agency’s Student Launch webpage.
      Participants from James Madison University – the overall winner of the 2025 NASA Student Launch competition – stand around their team’s high-powered rocket as it sits on the pad before launching on May 4 event. NASA/Krisdon Manecke Each year, a payload challenge is issued to the university teams, and this year’s task took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars. Teams were challenged to include sensor data from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” had to relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Student Launch is one of NASA’s seven Artemis Student Challenges – activities that connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement. Additional funding and support are provided by the Office of STEM Engagement’s Next Generation STEM project, NASA’s Marshall Space Flight Center, the agency’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies Inc.
      To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
      For more information about Student Launch, visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Share
      Details
      Last Updated Jun 16, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Find Your Place For Colleges & Universities Learning Resources Explore More
      3 min read NASA Announces Teams for 2025 Student Launch Challenge
      Article 9 months ago 4 min read 25 Years Strong: NASA’s Student Launch Competition Accepting 2025 Proposals
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
      At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
      Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
      NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
      Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
      The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
      NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
      Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
      Keya Shah
      Softgoods Engineering Technologist
      Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
      “SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
      As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
      “Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
      Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
      “There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
      Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
      Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
      Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
      “It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
      Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
      “NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
      It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
      Felix Arwen
      Softgoods Engineer
      Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
      Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
      “While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
      SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
      Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
      “Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      In collaboration with the United States Department of Agriculture, Amazon Web Services, and Colorado State University, NASA turned to students for AI-driven solutions. NASA On March 28, 80 college students filed into Colorado State University’s (CSU) Nancy Richardson Design Center to receive pizza and a challenge: design an intelligent system capable of traversing rugged terrain to provide aid in emergency scenarios.
      They had 24 hours to complete this mission.
      Co-led by CSU, the United States Department of Agriculture (USDA) Forest Service, and NASA, the Spring 2025 CSU Hackathon forged a symbiotic relationship between federal agencies looking for novel AI solutions and innovative students hungry for a challenge.
      “One of the goals of the Career Center is to create opportunities for relationship building,” said Mika Dalton, CSU’s career center employer relations coordinator. “Events like these really help students connect with industry and identify different career pathways to expand their understanding of where their education could lead them after graduation.”
      In teams of four, students chose between two technical prompts grounded in real-world data. The USDA Forest Service posed the “Uncharted Challenge,” asking teams to develop an autonomous mapping system for uncharted National Forest System roads using high-resolution satellite imagery. In the “Rover Challenge” posed by NASA, students were asked to design an algorithm that could autonomously guide a rover across rough terrain to reach an injured firefighter.
      Over the next 24 hours, students analyzed lidar and satellite imagery, built algorithms, and tested their models in SageMaker, a development environment hosted by Amazon Web Services (AWS). As they collaborated on their solutions, students also helped NASA evaluate SageMaker’s potential for agency adoption.
      The students’ work delivered tangible value to both agencies, demonstrating novel approaches to real operational challenges like wildfire response, terrain mapping, and emergency search and rescue.
      The students did an incredible job showing how AI can solve tough problems, from navigating the Moon to handling emergencies, all in line with NASA’s mission.
      Martin Garcia
      NASA’s artificial intelligence and innovation lead
      For the USDA, accurate and efficient trail maps can support fire crews and forest managers; for NASA, more advanced terrain navigation systems enhance efforts in AI-assisted robotics, including lunar rovers tasked with reaching astronauts or delivering supplies in critical missions. “The students’ consideration for energy efficient lunar vehicle traversal would benefit the agency’s mission to implement extended scientific and engineering missions on the lunar surface,” said NASA data scientist Andrew Wilder.
      Winning teams received recognition for Best Overall Project, Ingenuity, Simplicity, and Tenacity. Prizes included letters of recommendation from agency leaders and future opportunities to present their work to NASA and Forest Service staff.
      “I had a great team, and we were able to work through several setbacks with clear communication. I also got to meet professionals from NASA, USDA, Forest Service, and AWS. These were great opportunities and so I learned a lot of networking and interviewing from them,” said one participating CSU student.
      Ultimately, 98% of post-event student survey respondents indicated a strong enthusiasm to share this event with other students. Along with the endorsement, students shared that it was a great way to learn skills, network, and try something new. Many respondents, while strongly recommending the event, emphasized that the event was very challenging, intense, and a place to apply classroom knowledge.
      The hackathon demonstrated what’s possible when creativity, passion, and partnership align. For NASA’s Chief AI Officer (CAIO), it offered a clear proof of concept: a low-cost, high-impact model for advancing AI adoption by connecting real-world challenges with emerging talent. Beyond the technical outputs, NASA gained testable solutions, valuable insights into rapid prototyping, and deeper relationships with federal, academic, and industry partners. The hackathon also provided a repeatable framework for future events with other institutions.
      By bringing together mission teams, partners, and student innovators—and fueling them with pizza and friendly competition—NASA is accelerating innovation in bold, creative ways.
      Keep Exploring Discover More Topics From NASA
      NASA STEM Opportunities and Activities For Students
      For Colleges and Universities
      Partnering with NASA STEM Engagement
      About STEM Engagement at NASA

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images NASA has selected two more university student teams to help address real-world aviation challenges, through projects aimed at using drones for hurricane relief and improved protection of air traffic systems from cyber threats. 
      The research awards were made through NASA’s University Student Research Challenge (USRC), which provides student-led teams with opportunities to contribute their novel ideas to advance NASA’s Aeronautics research priorities.   
      As part of USRC, students participate in real-world aspects of innovative aeronautics research both in and out of the laboratory.  
      “USRC continues to be a way for students to push the boundary on exploring the possibilities of tomorrow’s aviation industry.” said Steven Holz, who manages the USRC award process. “For some, this is their first opportunity to engage with NASA. For others, they may be taking their ideas from our Gateways to Blue Skies competition and bringing them closer to reality.” 
      In the case of one of the new awardees, North Carolina State University in Raleigh applied for their USRC award after refining a concept that made them a finalist in NASA’s 2024 Gateways to Blue Skies competition.  
      Each team of students selected for a USRC award receives a NASA grant up to $80,000 and is tasked with raising additional funds through student-led crowdfunding. This process helps students develop skills in entrepreneurship and public communication. 
      The new university teams and research topics are: 
      North Carolina State University in Raleigh 
      “Reconnaissance and Emergency Aircraft for Critical Hurricane Relief” will develop and deploy advanced Unmanned Aircraft Systems (UAS) designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters. 
      The team includes Tobias Hullette (team lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, and Hadie Sabbah, with faculty mentor Felix Ewere. 
      Texas A&M University, in College Station 
      “Context-Aware Cybersecurity for UAS Traffic Management” will develop, test, and pursue the implementation of an aviation-context-aware network authentication system for the holistic management of cybersecurity threats to enable future drone traffic control systems.  
      The team includes Vishwam Raval (team lead), Nick Truong, Oscar Leon, Kevin Lei, Garett Haynes, Michael Ades, Sarah Lee, and Aidan Spira, with faculty mentor Sandip Roy. 
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      9 min read ARMD Research Solicitations (Updated May 1)
      Article 2 weeks ago 4 min read Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar
      Article 3 weeks ago 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 15, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      University Student Research Challenge Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
  • Check out these Videos

×
×
  • Create New...