Jump to content

NASA’s Deep Space Optical Comm Demo Sends, Receives First Data


NASA

Recommended Posts

  • Publishers

6 min read

NASA’s Deep Space Optical Comm Demo Sends, Receives First Data

NASA’s Psyche spacecraft is shown in a clean room
NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft.
NASA/Ben Smegelsky

DSOC, an experiment that could transform how spacecraft communicate, has achieved ‘first light,’ sending data via laser to and from far beyond the Moon for the first time.

NASA’s Deep Space Optical Communications (DSOC) experiment has beamed a near-infrared laser encoded with test data fromnearly 10 million miles (16 million kilometers) away – about 40 times farther than the Moon is from Earth – to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California. This is the farthest-ever demonstration of optical communications.

Riding aboard the recently launched Psyche spacecraft, DSOC is configured to send high-bandwidth test data to Earth during its two-year technology demonstration as Psyche travels to the main asteroid belt between Mars and Jupiter. NASA’s Jet Propulsion Laboratory in Southern California manages both DSOC and Psyche.

The tech demo achieved “first light” in the early hours of Nov. 14 after its flight laser transceiver – a cutting-edge instrument aboard Psyche capable of sending and receiving near-infrared signals – locked onto a powerful uplink laser beacon transmitted from the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California. The uplink beacon helped the transceiver aim its downlink laser back to Palomar (which is 100 miles, or 130 kilometers, south of Table Mountain) while automated systems on the transceiver and ground stations fine-tuned its pointing.

Learn more about how DSOC will be used to test high-bandwidth data transmission beyond the Moon for the first time – and how it could transform deep space exploration. Credit: NASA/JPL-Caltech/ASU

“Achieving first light is one of many critical DSOC milestones in the coming months, paving the way toward higher-data-rate communications capable of sending scientific information, high-definition imagery, and streaming video in support of humanity’s next giant leap: sending humans to Mars,” said Trudy Kortes, director of Technology Demonstrations at NASA Headquarters in Washington.

Test data also was sent simultaneously via the uplink and downlink lasers, a procedure known as “closing the link” that is a primary objective for the experiment. While the technology demonstration isn’t transmitting Psyche mission data, it works closely with the Psyche mission-support team to ensure DSOC operations don’t interfere with those of the spacecraft.

“Tuesday morning’stest was the first to fully incorporate the ground assets and flight transceiver, requiring the DSOC and Psyche operations teams to work in tandem,” said Meera Srinivasan, operations lead for DSOC at JPL. “It was a formidable challenge, and we have a lot more work to do, but for a short time, we were able to transmit, receive, and decode some data.”

Before this achievement, the project needed to check the boxes on several other milestones, from removing the protective cover for the flight laser transceiver to powering up the instrument. Meanwhile, the Psyche spacecraft is carrying out its own checkouts, including powering up its propulsion systems and testing instruments that will be used to study the asteroid Psyche when it arrives there in 2028.

First Light and First Bits

With successful first light, the DSOC team will now work on refining the systems that control the pointing of the downlink laser aboard the transceiver. Once achieved, the project can begin its demonstration of maintaining high-bandwidth data transmission from the transceiver to Palomar at various distances from Earth. This data takes the form of bits (the smallest units of data a computer can process) encoded in the laser’s photons – quantum particles of light. After a special superconducting high-efficiency detector array detects the photons, new signal-processing techniques are used to extract the data from the single photons that arrive at the Hale Telescope.

The DSOC experiment aims to demonstrate data transmission rates 10 to 100 times greater than the state-of-the-art radio frequency systems used by spacecraft today. Both radio and near-infrared laser communications utilize electromagnetic waves to transmit data, but near-infrared light packs the data into significantly tighter waves, enabling ground stations to receive more data. This will help future human and robotic exploration missions and support higher-resolution science instruments.

The flight laser transceiver operations team
The flight laser transceiver operations team for NASA’s Deep Space Optical Communications (DSOC) technology demonstration works in the Psyche mission support area at JPL in the early hours of Nov. 14, when the project achieved “first light.”
NASA/JPL-Caltech
e2b-pia26144-glt-staff.jpg?w=2048
DSOC ground laser transmitter operators pose for a photo at the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, shortly after the technology demonstration achieved “first light” on Nov. 14.
NASA/JPL-Caltech

“Optical communication is a boon for scientists and researchers who always want more from their space missions, and will enable human exploration of deep space,” said Dr. Jason Mitchell, director of the Advanced Communications and Navigation Technologies Division within NASA’s Space Communications and Navigation (SCaN) program. “More data means more discoveries.”

While optical communication has been demonstrated in low Earth orbit and out to the Moon, DSOC is the first test in deep space. Like using a laser pointer to track a moving dime from a mile away, aiming a laser beam over millions of miles requires extremely precise “pointing.”

The demonstration also needs to compensate for the time it takes for light to travel from the spacecraft to Earth over vast distances: At Psyche’s farthest distance from our planet, DSOC’s near-infrared photons will take about 20 minutes to travel back (they took about 50 seconds to travel from Psyche to Earth during the Nov. 14 test). In that time, both spacecraft and planet will have moved, so the uplink and downlink lasers need to adjust for the change in location. “Achieving first light is a tremendous achievement. The ground systems successfully detected the deep space laser photons from DSOC’s flight transceiver aboard Psyche,” said Abi Biswas, project technologist for DSOC at JPL. “And we were also able to send some data, meaning we were able to exchange ‘bits of light’ from and to deep space.”

More About the Mission

DSOC is the latest in a series of optical communication demonstrations funded by NASA’s Space Technology Mission Directorate and the Space Communications and Navigation (SCaN) program within the agency’s Space Operations Mission Directorate.

The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center, managed the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

For more information about DSOC, visit:

https://www.jpl.nasa.gov/missions/dsoc

News Media Contact

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

2023-171

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:08:29 Focus on Euclid with Laurent Brouard: “I’m going to show you what a telescope that we send into space looks like.”
      Laurent Brouard, Project Manager at Airbus Defence and Space, was responsible for building the Euclid payload module (PLM).
      In this interview, which took place in a clean room at the Airbus premises in Toulouse, he describes with words, gestures, and the Euclid PLM structural and thermal model how Euclid works.
      Did you know that Euclid sees the same part of the sky at the same time in both the infrared and visible wavelengths? Or that in space radiators keep the instruments cold? Have you ever wondered how light “travels” inside Euclid’s telescope?
      Listen to Laurent to know more about the technology behind the mission that will map the dark matter and the dark energy of the Universe.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      ©  ESA - European Space Agency
      Access the other Space Team Europe for Euclid videos
      View the full article
    • By NASA
      2 min read
      NASA’s Hubble Space Telescope Pauses Science Due to Gyro Issue
      Hubble orbiting more than 300 miles above Earth as seen from the space shuttle. NASA NASA is working to resume science operations of the agency’s Hubble Space Telescope after it entered safe mode Nov. 23 due to an ongoing gyroscope (gyro) issue. Hubble’s instruments are stable, and the telescope is in good health.
      The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings. The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground.
      Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23.
      The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.
      NASA anticipates Hubble will continue making groundbreaking discoveries, working with other observatories, such as the agency’s James Webb Space Telescope, throughout this decade and possibly into the next.
      Launched in 1990, Hubble has been observing the universe for more than 33 years. Read more about some of Hubble’s greatest scientific discoveries.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Alise Fisher
      NASA Headquarters, Washington, D.C.
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Nov 29, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Galaxies Stories
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Stars Stories
      View the full article
    • By Space Force
      The Department of the Air Force Rapid Capabilities Office, in partnership with the United States Space Force and SpaceX, is making final preparations to launch the seventh mission of the X-37B Orbital Test Vehicle. Due to launch delays and pad availability, USSF-52 will now launch on Dec. 10, 2023.

      View the full article
    • By NASA
      5 min read
      Ham Radio in Space: Engaging with Students Worldwide for 40 Years
      In May 2018, a student at Mill Springs Academy in Alpharetta, Georgia, Andrew Maichle, talked to NASA astronaut Scott Tingle on the International Space Station via amateur or ham radio. The experience profoundly affected Maichle, who went on to study electrical engineering at Clemson University in South Carolina.
      “It was so cool to see in real time the utmost levels of what people in science are able to accomplish, and to talk to and interact with someone at that level,” Maichle recalls. “The space station is an incredible work of engineering and to interact with someone in space was just mind-boggling. I was extraordinarily honored and very lucky to have had the opportunity.”

      40 Years of Contact
      As of November 2023, students have been talking to astronauts in space for 40 years. Crew members on the space shuttle Columbia first used an amateur radio to communicate with people on Earth in 1983. That program, the Shuttle Amateur Radio Experiment (SAREX), ended in 1999.
      In October 2000, amateur radio equipment launched to the space station along with its first crew members, who deployed it on Nov. 13, 2000. ISS Ham Radio, also known as Amateur Radio on the International Space Station (ARISS), has operated continuously since then. Each year, the program hosts about a hundred contacts. It has now directly connected over 100 crew members with more than 250,000 participants from 49 U.S. states, 63 countries, and every continent. These experiences encourage interest in science, technology, engineering, and mathematics (STEM) education and help inspire the next generation.
      “The ham radio program represents an amazing opportunity to engage with kids all over the world,” said NASA astronaut Kjell Lindgren, who participated on each of his missions. “It provides the opportunity for educators and ham operators to encourage and inspire their students with STEM topics culminating in a real-time conversation with astronauts living and working on the space station.”
      Before a scheduled contact, students study related topics. They have about nine minutes to ask questions, often discussing career choices and scientific activities aboard the orbiting laboratory.
      NASA astronaut Kjell Lindgren talks on the space station’s ham radio set. NASA Inspiration Beyond Education
      These contacts go beyond inspiring students – sometimes they encourage entire communities. Students at Canterbury School in Fort Myers, Florida, spoke with crew members on Oct. 24, 2022. Just a few weeks earlier, Hurricane Ian displaced 30 percent of the school’s population.
      “Before the hurricane, our had students spent months building their own satellite tracking antenna,” said Christiana Deeter, science department head at the school. “After the storm, so many people came forward to make sure that we had what we needed. It was a great opportunity for our kids to stop looking around and look up.”
      The school spoke with NASA astronaut Josh Cassada. “He has kids of his own and was just as excited as our kids were,” said Deeter. “I asked him if he had a message for the families and he talked about coming together as a community and not giving up hope. Our school was on a high the rest of the year.”
      Canterbury School student Isaac Deeter asks a question during the school’s ham radio contact while student Samantha Pezzi waits her turn. Canterbury School From an Astronaut’s Perspective
      Ham radio also contributes to astronaut well-being. In addition to scheduled contacts, crew members often crank up the radio during free time to catch calls from around the world.
      Lindgren spoke to amateur radio operators or “hams” on all seven continents. His favorite memory is connecting with eight-year-old Isabella Payne and her father Matthew Payne in the United Kingdom. “Hearing her young, accented voice cut through the static – I was very impressed to hear her calling the space station,” said Lindgren. “It made my day!”
      Lindgren’s contact with Payne was on Aug. 2, 2022. On Aug.18, 2023, Payne’s school, St Peter-In-Thanet CE Primary, conducted a scheduled contact with NASA astronaut Jasmin Moghbeli.
      UK student Isabella Payne, who contacted NASA astronaut Kjell Lindgren via ham radio, is shown on Lindgren’s device floating in the space station.NASA The program also fosters international cooperation. Crew members are trained by multi-national teams. Italian teams designed and built antennas, while German teams built repeater stations that improve ham contacts. Amateur radio even serves as an emergency backup communications network for the space station.
      How Schools Can Get Involved
      ARISS is a partnership between NASA, amateur radio organizations, and international space agencies. While there is no cost to a host location for the contact, there may be some equipment-related costs. Scheduling is subject to mission operations and may change, so hosts need to be flexible.
      The astronaut and the ham radio operator, who is the technical point of contact on the ground, must be licensed. While students do not have to be licensed, many choose to obtain their license after the experience.
      Information about applying is available at www.ariss.org or can be requested from ariss@arrl.org.
      The Next 40 Years
      “I hope the program continues for a long time,” said Maichle. “It is so important for kids trying to figure out what you want to accomplish in life. It is cool to have that memory that sticks with you. It inspires so many people.”
      And as those involved celebrate 40 years of ham radio in space, some are dreaming even bigger.
      “I would love for there to be a continued amateur radio presence in human spaceflight,” said Lindgren. “I expect we’ll have a radio on the space station for as long as it operates. Then can we put a ham radio station on the Moon? Now that would be cool.”

      Melissa Gaskill
      International Space Station Program Research Office
      Johnson Space Center

      Search this database of scientific experiments to learn more about those mentioned above. Space Station Research Explorer.

      Facebook logo @ISS @ISS_Research@Space_Station Instagram logo @ISS Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Education and Outreach
      ISS National Laboratory
      For Educators
      View the full article
    • By European Space Agency
      Video: 00:03:39 Focus on Euclid with Guadalupe Cañas Herrera: “I’m exactly where I’ve always wanted to be.”
      Guadalupe Cañas Herrera, an ESA Internal Research Fellow currently working for ESA’s Euclid mission at ESTEC, the Netherlands, describes in this interview her personal and professional trajectory.
      Passionate about space since her early childhood, she has spent endless nights looking at the stars. Now, this theoretical physicist develops her activities within the Euclid Scientific Consortium to establish the quantity of dark matter and dark energy existing in the Universe.
      Listen to Guadalupe for a vivid account from a vocational scientist and an ardent defender of scientific collaboration.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      Access the other Space Team Europe for Euclid videos
      View the full article
  • Check out these Videos

×
×
  • Create New...