Members Can Post Anonymously On This Site
Hubble Zooms In on Heart of Mystery Comet
-
Similar Topics
-
By NASA
ESA/Hubble & NASA, R. Windhorst, W. Keel This NASA/ESA Hubble Space Telescope image features a spiral galaxy, named UGC 10043. We don’t see the galaxy’s spiral arms because we are seeing it from the side. Located roughly 150 million light-years from Earth in the constellation Serpens, UGC 10043 is one of the somewhat rare spiral galaxies that we see edge-on.
This edge-on viewpoint makes the galaxy’s disk appear as a sharp line through space, with its prominent dust lanes forming thick bands of clouds that obscure our view of the galaxy’s glow. If we could fly above the galaxy, viewing it from the top down, we would see this dust scattered across UGC 10043, possibly outlining its spiral arms. Despite the dust’s obscuring nature, some active star-forming regions shine out from behind the dark clouds. We can also see that the galaxy’s center sports a glowing, almost egg-shaped ‘bulge’, rising far above and below the disk. All spiral galaxies have a bulge similar to this one as part of their structure. These bulges hold stars that orbit the galactic center on paths above and below the whirling disk; it’s a feature that isn’t normally obvious in pictures of galaxies. The unusually large size of this bulge compared to the galaxy’s disk is possibly due to UGC 10043 siphoning material from a nearby dwarf galaxy. This may also be why its disk appears warped, bending up at one end and down at the other.
Like most full-color Hubble images, this image is a composite, made up of several individual snapshots taken by Hubble at different times, each capturing different wavelengths of light. One notable aspect of this image is that the two sets of data that comprise this image were collected 23 years apart, in 2000 and 2023! Hubble’s longevity doesn’t just afford us the ability to produce new and better images of old targets; it also provides a long-term archive of data which only becomes more and more useful to astronomers.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The north polar region of Jupiter’s volcanic moon Io was captured by NASA’s Juno during spacecraft’s 57th close pass of the gas giant on Dec. 30, 2023. Data from recent flybys is helping scientists understand Io’s interior. Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Gerald Eichstädt A new study points to why, and how, Io became the most volcanic body in the solar system.
Scientists with NASA’s Juno mission to Jupiter have discovered that the volcanoes on Jupiter’s moon Io are each likely powered by their own chamber of roiling hot magma rather than an ocean of magma. The finding solves a 44-year-old mystery about the subsurface origins of the moon’s most demonstrative geologic features.
A paper on the source of Io’s volcanism was published on Thursday, Dec. 12, in the journal Nature, and the findings, as well as other Io science results, were discussed during a media briefing in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
About the size of Earth’s Moon, Io is known as the most volcanically active body in our solar system. The moon is home to an estimated 400 volcanoes, which blast lava and plumes in seemingly continuous eruptions that contribute to the coating on its surface.
This animated tour of Jupiter’s fiery moon Io, based on data collected by NASA’s Juno mission, shows volcanic plumes, a view of lava on the surface, and the moon’s internal structure. NASA/JPL-Caltech/SwRI/Koji Kuramura/Gerald Eichstädt Although the moon was discovered by Galileo Galilei on Jan. 8, 1610, volcanic activity there wasn’t discovered until 1979, when imaging scientist Linda Morabito of NASA’s Jet Propulsion Laboratory in Southern California first identified a volcanic plume in an image from the agency’s Voyager 1 spacecraft.
“Since Morabito’s discovery, planetary scientists have wondered how the volcanoes were fed from the lava underneath the surface,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Was there a shallow ocean of white-hot magma fueling the volcanoes, or was their source more localized? We knew data from Juno’s two very close flybys could give us some insights on how this tortured moon actually worked.”
The Juno spacecraft made extremely close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its pizza-faced surface. During the close approaches, Juno communicated with NASA’s Deep Space Network, acquiring high-precision, dual-frequency Doppler data, which was used to measure Io’s gravity by tracking how it affected the spacecraft’s acceleration. What the mission learned about the moon’s gravity from those flybys led to the new paper by revealing more details about the effects of a phenomenon called tidal flexing.
This five-frame sequence shows a giant plume erupting from Io’s Tvashtar volcano, extending 200 miles (330 kilometers) above the fiery moon’s surface. It was captured over an eight-minute period by NASA’s New Horizons mission as the spacecraft flew by Jupiter in 2007.NASA/Johns Hopkins APL/SwRI Prince of Jovian Tides
Io is extremely close to mammoth Jupiter, and its elliptical orbit whips it around the gas giant once every 42.5 hours. As the distance varies, so does Jupiter’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: an extreme case of tidal flexing — friction from tidal forces that generates internal heat.
“This constant flexing creates immense energy, which literally melts portions of Io’s interior,” said Bolton. “If Io has a global magma ocean, we knew the signature of its tidal deformation would be much larger than a more rigid, mostly solid interior. Thus, depending on the results from Juno’s probing of Io’s gravity field, we would be able to tell if a global magma ocean was hiding beneath its surface.”
The Juno team compared Doppler data from their two flybys with observations from the agency’s previous missions to the Jovian system and from ground telescopes. They found tidal deformation consistent with Io not having a shallow global magma ocean.
“Juno’s discovery that tidal forces do not always create global magma oceans does more than prompt us to rethink what we know about Io’s interior,” said lead author Ryan Park, a Juno co-investigator and supervisor of the Solar System Dynamics Group at JPL. “It has implications for our understanding of other moons, such as Enceladus and Europa, and even exoplanets and super-Earths. Our new findings provide an opportunity to rethink what we know about planetary formation and evolution.”
There’s more science on the horizon. The spacecraft made its 66th science flyby over Jupiter’s mysterious cloud tops on Nov. 24. Its next close approach to the gas giant will occur 12:22 a.m. EST, Dec. 27. At the time of perijove, when Juno’s orbit is closest to the planet’s center, the spacecraft will be about 2,175 miles (3,500 kilometers) above Jupiter’s cloud tops and will have logged 645.7 million miles (1.039 billion kilometers) since entering the gas giant’s orbit in 2016.
More About Juno
JPL, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is available at:
https://science.nasa.gov/mission/juno
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Erin Morton
NASA Headquarters, Washington
202-385-1287 / 202-805-9393
karen.c.fox@nasa.gov / erin.morton@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2024-173
Share
Details
Last Updated Dec 12, 2024 Related Terms
Juno Jet Propulsion Laboratory Explore More
5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
Article 3 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
The ongoing mystery and debate surrounding UFO and drone sightings across the U.S. continue to captivate public attention. The lack of transparency and definitive answers from government agencies combined with the apparent absence of military action against these drones, has fueled speculation about possible cover-ups or incompetence.
Local, county, and state governments seem to have no knowledge of who is operating these drones, where they originate, or their purpose. Despite this, officials confidently assert that "there is no credible threat." This raises the question: how can they be so certain? The reality suggests they cannot.
Recently, the Pentagon issued a statement following claims by a New Jersey congressman that Iran had deployed a "mothership" off the U.S. East Coast, launching drones. The Pentagon denied any military origin for the drones and ruled out links to known foreign entities, but questions persist about whether critical information is being withheld.
If these drones are not linked to Iran, the U.S., Russia, China, or any other nation, some experts propose they may be part of clandestine "deep state" programs. These programs could involve advanced aerospace technologies being tested by private companies under classified initiatives.
Witness accounts, including those from a New Jersey sheriff and Coast Guard officials, suggest the drones exhibit highly unusual behaviors. These include emerging from the ocean and performing movements like abrupt 90-degree turns—characteristics that could imply the use of advanced propulsion systems not publicly known.
Another theory posits that the drones may not be physical objects at all but rather holographic projections, akin to the controversial "Project Blue Beam" concept. If true, this would explain why attempts to intercept them could fail—they might not physically exist.
The sheer number, endurance, and sophistication of these drones hint at a coordinated operation. Some theorists believe this might be part of a psychological operation designed to distract from pressing political, economic, or social issues. The timing of such events often appears suspiciously aligned with periods of public, economic unrest or uncertainty.
In the event that the "deep state" is orchestrating these phenomena, some fear it could be a prelude to a false flag operation, with motives and consequences yet to be revealed.
The situation remains shrouded in speculation, leaving the public to grapple with more questions than answers.
View the full article
-
By NASA
Hubble Space Telescope Home Hubble Spots a Spiral in the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
Hubble Spots a Spiral in the Celestial River
This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1637. ESA/Hubble & NASA, D. Thilker The subject of this NASA/ESA Hubble Space Telescope image is NGC 1637, a spiral galaxy located 38 million light-years from Earth in the constellation Eridanus, the River.
This image comes from an observing program dedicated to studying star formation in nearby galaxies. Stars form in cold, dusty gas clouds that collapse under their own gravity. As young stars grow, they heat their nurseries through starlight, winds, and powerful outflows. Together, these factors play a role in controlling the rate at which future generations of stars form.
NGC 1637 holds evidence of star formation scattered throughout its disk, if you know where to look. The galaxy’s spiral arms have pockets of pink clouds, many with bright blue stars. The pinkish color comes from hydrogen atoms excited by ultraviolet light from young, massive stars forming within the clouds. This contrasts with the warm yellow glow of the galaxy’s center, which is home to a densely packed collection of older, redder stars.
The stars that set their cloudy birthplaces aglow are comparatively short-lived, and many of these stars will explode as supernovae just a few million years after they’re born. In 1999, NGC 1637 played host to a supernova named SN 1999EM, lauded as the brightest supernova seen that year. When a massive star expires as a supernova, the explosion outshines its entire home galaxy for a short time. While a supernova marks the end of a star’s life, it can also jump start the formation of new stars by compressing nearby clouds of gas, beginning the stellar lifecycle anew.
Explore More
Hubble’s Galaxies
Exploring the Birth of Stars
Homing in on Cosmic Explosions
Hubble’s Nebulae
Hubble Focus E-Book: Galaxies through Space and Time
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars Supernovae View the full article
-
By NASA
Hubble Space Telescope Home NASA’s Hubble Takes the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Takes the Closest-Ever Look at a Quasar
A NASA Hubble Space Telescope image of the core of quasar 3C 273. Credits:
NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) Astronomers have used the unique capabilities of NASA’s Hubble Space Telescope to peer closer than ever into the throat of an energetic monster black hole powering a quasar. A quasar is a galactic center that glows brightly as the black hole consumes material in its immediate surroundings.
The new Hubble views of the environment around the quasar show a lot of “weird things,” according to Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in Nice, France. “We’ve got a few blobs of different sizes, and a mysterious L-shaped filamentary structure. This is all within 16,000 light-years of the black hole.”
Some of the objects could be small satellite galaxies falling into the black hole, and so they could offer the materials that will accrete onto the central supermassive black hole, powering the bright lighthouse. “Thanks to Hubble’s observing power, we’re opening a new gateway into understanding quasars,” said Ren. “My colleagues are excited because they’ve never seen this much detail before.”
Quasars look starlike as point sources of light in the sky (hence the name quasi-stellar object). The quasar in the new study, 3C 273, was identified in 1963 by astronomer Maarten Schmidt as the first quasar. At a distance of 2.5 billion light-years it was too far away for a star. It must have been more energetic than ever imagined, with a luminosity over 10 times brighter than the brightest giant elliptical galaxies. This opened the door to an unexpected new puzzle in cosmology: What is powering this massive energy production? The likely culprit was material accreting onto a black hole.
A Hubble Space Telescope image of the core of quasar 3C 273. A coronagraph on Hubble blocks out the glare coming from the supermassive black hole at the heart of the quasar. This allows astronomers to see unprecedented details near the black hole such as weird filaments, lobes, and a mysterious L-shaped structure, probably caused by small galaxies being devoured by the black hole. Located 2.5 billion light-years away, 3C 273 is the first quasar (quasi-stellar object) ever discovered, in 1963. NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) In 1994 Hubble’s new sharp view revealed that the environment surrounding quasars is far more complex than first suspected. The images suggested galactic collisions and mergers between quasars and companion galaxies, where debris cascades down onto supermassive black holes. This reignites the giant black holes that drive quasars.
For Hubble, staring into the quasar 3C 273 is like looking directly into a blinding car headlight and trying to see an ant crawling on the rim around it. The quasar pours out thousands of times the entire energy of stars in a galaxy. One of closest quasars to Earth, 3C 273 is 2.5 billion light-years away. (If it was very nearby, a few tens of light-years from Earth, it would appear as bright as the Sun in the sky!) Hubble’s Space Telescope Imaging Spectrograph (STIS) can serve as a coronagraph to block light from central sources, not unlike how the Moon blocks the Sun’s glare during a total solar eclipse. Astronomers have used STIS to unveil dusty disks around stars to understand the formation of planetary systems, and now they can use STIS to better understand quasars’ host galaxies. The Hubble coronograph allowed astronomers to look eight times closer to the black hole than ever before.
Scientists got rare insight into the quasar’s 300,000-light-year-long extragalactic jet of material blazing across space at nearly the speed of light. By comparing the STIS coronagraphic data with archival STIS images with a 22-year separation, the team led by Ren concluded that the jet is moving faster when it is farther away from the monster black hole.
“With the fine spatial structures and jet motion, Hubble bridged a gap between the small-scale radio interferometry and large-scale optical imaging observations, and thus we can take an observational step towards a more complete understanding of quasar host morphology. Our previous view was very limited, but Hubble is allowing us to understand the complicated quasar morphology and galactic interactions in detail. In the future, looking further at 3C 273 in infrared light with the James Webb Space Telescope might give us more clues,” said Ren.
At least 1 million quasars are scattered across the sky. They are useful background “spotlights” for a variety of astronomical observations. Quasars were most abundant about 3 billion years after the big bang, when galaxy collisions were more common.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Explore More
Science Behind the Discoveries: Quasars
Science Behind the Discoveries: Black Holes
Monster Black Holes are Everywhere
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard
Space Telescope Science Institute, Baltimore, MD
Science Contact:
Bin Ren
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France
Share
Details
Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Quasars Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hubble Gravitational Lenses
Hubble Lithographs
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.