Jump to content

Satellite Data Can Help Limit the Dangers of Windblown Dust


NASA

Recommended Posts

  • Publishers
8 Min Read

Satellite Data Can Help Limit the Dangers of Windblown Dust

Dust storms present a growing threat to the health and safety of U.S. populations. A new model, powered by NASA and NOAA satellite data, provides important early warnings.
Credits:
Stock Footage Provided by Pond5/EnglerAerial

Interstate 10, an artery that cuts through the rural drylands of southern New Mexico, is one of the country’s deadliest roadways. On one stretch of the highway, just north of a dry lakebed called Lordsburg Playa, fatal collisions occur with such regularity that officials often call it the “dust trap.” It’s a fitting name. Since 1967, at least 55 deaths in the area have been linked to dust storms. 

This stretch of Interstate 10 offers a concentrated example of the hazards that dust storms carry. But across the U.S. Great Plains, levels of windblown dust have increased steadily, by about 5% each year between 2000 and 2018, contributing to a decline in air quality and an increase in fatal collisions.

“Dust storms are appearing with greater frequency for reasons that include extended drought conditions and urban sprawl, which disrupt the fragile biotic crust of the desert,” said John Haynes, program manager for NASA’s Health and Air Quality Applied Sciences Team. As reduced rainfall in arid regions and warmer weather become regular fixtures of the U.S. climate, experts expect the trend to continue.   

Dust storms can cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases.

/wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg

john Haynes

Program manager for NASA Health and Air Quality Applied Sciences Team

On the ground, dust storms form menacing palls that can swallow entire cities whole. From space, dust storms can be observed moving across continents and oceans, revealing their tremendous scale. It’s from this vantage point, high above the clouds, that NASA and NOAA have Earth-observing satellites that help scientists and first responders track windblown dust. 

Daniel Tong, professor of atmospheric chemistry and aerosols at George Mason University, working closely with NASA’s Health and Air Quality Applied Sciences Team, leads a NASA-funded effort to improve the country’s dust forecasting capabilities. Tong’s forecasting system relies on an algorithm called FENGSHA, which means “windblown dust” in Mandarin. By plugging real-time satellite data into a complex model of Earth’s atmosphere – one that accounts for site-specific variables like soil type, wind speed, and how Earth’s surface interacts with winds – the system churns out hourly forecasts that can predict dust storms up to three days in advance. 

On March 16, 2021, images acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite show large dust plumes sweeping across New Mexico, Texas, and Mexico.
On March 16, 2021, images acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite show large dust plumes sweeping across New Mexico, Texas, and Mexico. Credit: NASA Earth Observatory
NASA/NOAA

FENGSHA was initially developed using a dust observation method trained by NASA’s Aqua and Terra satellites. It’s these “space truths,” as Tong calls them, that make reliable forecasting possible. Comparing the model’s predictions with satellite imagery from real dust storms allows the team to identify shortcomings and improve accuracy. The most recent version of the model includes data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA-NOAA Suomi-NPP, NOAA-20, and NOAA-21 satellites, which observe each location on the planet at least twice a day.

Currently, the dust monitoring system is available to all 122 of the National Weather Service’s regional forecasting offices. When a forecast calls for dust, local teams assess each case individually and decide whether to send out alerts. These could involve a warning to transit authorities or weather alerts sent directly to people’s phones.

“Dust storms cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases,” Haynes said.  “Early warning systems empower individuals to take necessary actions, such as sheltering indoors or clearing roadways until the storm passes.”

The Benefits of Early Warning  

On May 1, 2023, high winds in Illinois sent a dark cloud of dust creeping along Interstate 55, the state’s main throughway. Visibility was reduced to zero in a matter of minutes – leaving drivers with little time to react. The resulting collision involved 72 vehicles and killed eight people. Dozens more were hospitalized.

In some hotspots for dust, officials are taking steps to minimize the damage. On Interstate 10 in New Mexico and Arizona, for example, drivers are now met with 100 miles of roadside warning signs that urge them to pull over when dust is detected. But Interstate 55, in Illinois, isn’t a hotspot. No one saw the storm coming. And as dust claims new territory, local ground-based solutions may not provide sufficient coverage. 

This is why satellite-based forecasting is essential, said Morgan Gorris, an Earth system scientist and geohealth expert at Los Alamos National Laboratory. “When we see a dust storm developing in radar returns or on dust sensors, people are already on the road, and it’s more difficult to make safety decisions.”

Tong hopes to see forecasts used more frequently in commercial trucking “to prevent delays, traffic jams, and accidents,” he said. Notably, semi-trucks or tractor-trailers are involved in almost all fatal collisions involving dust. By rerouting or delaying truck drivers, the worst accidents could be avoided.

Tong also promotes advanced forecasting as a way to reduce the frequency and intensity of dust storms. Storms like the one in Illinois – which rose from the overworked soil of the surrounding farmland – might be preventable. “If we know that there might be a dust storm tomorrow, farmers might stop tilling their land,” he said.

Most fatal collisions are the result of smaller, quick-forming dust storms. But larger storms carry additional hazards. Billowing plumes of dust lofted from loose soil or desert floors by high-speed winds can reach thousands of feet into the air and travel hundreds of miles, affecting the respiratory health of populations across great distances.

Valley fever —an infectious disease caused by a soil-dwelling fungus endemic to the arid and semi-arid climates of Texas, New Mexico, Arizona, and California — is also a threat. The fungus is harmless in the ground, but airborne spores can lead to infections that are sometimes fatal. The Centers for Disease Control and Prevention reported more than 200,000 infections of Valley fever since 1998. The current infection rate is about 10 times higher than that of the West Nile Virus, a vector-transmitted disease that often receives far more attention. 

An Image of Baja, CA, taken from the International Space Station depicts strong winds blowing dust into the Pacific Ocean.
An Image of Baja, CA, taken from the International Space Station depicts strong winds blowing dust into the Pacific Ocean. Valley fever cases have been discovered off the California coast among populations of bottle-nosed dolphins and other marine mammals, a sign that windblown dust could be carrying the fungus to non-endemic regions of the country. Credit: NASA

“The areas where we see dust storms and the areas endemic to Valley fever are both expanding,” said Gorris, who also warns that the expanding reach of dust storms might unearth new airborne diseases. “We don’t yet know what other biology is in the soil that might infect us.”

It’s not just what’s in the soil. Even when traces of chemical or biological toxins are absent, the soil itself can be a significant irritant. “People think that it’s a natural phenomenon carrying natural material, so it’s probably innocuous,” said Thomas E. Gill, professor of Earth and environmental sciences at the University of Texas at El Paso. But that’s not the case. Fine grains of dust can penetrate deep into lung tissue and are linked to an increase in respiratory illness and premature death.

According to a global study conducted by atmospheric scientists at NASA’s Goddard Space Flight Center, 2.89 million premature deaths were connected to PM2.5 in 2019 – and 22% of those deaths were attributed to dust. Most at risk were children and those with pre-existing conditions like asthma.

A New Way to See an Old Problem

In the 1930s, during the Dust Bowl years, severe drought and poor land management sent deadly “black blizzards” sweeping across the landscape. From Texas to Nebraska, wind stripped the soil of vital nutrients, generating massive dust storms that blocked out the Sun for days at a time and reached as far east as New York City – where the sky was dark enough for streetlights to switch on in the middle of the day.

Some scientists claim that the threat of a “dust bowl 2.0” is imminent. Urban sprawl, industrial-scale agriculture, wildfires, drought, and a warming climate can all strip the land of vegetation and remove moisture from the soil. But it can be difficult to draw a hard line from these individual sources to their cumulative effects. “We have to continue developing our understanding of the consequences on our communities and come up with better ways to protect citizens,” Tong said.

The next generation of FENGSHA will soon be integrated into an atmospheric model developed by NASA called the Goddard Chemistry Aerosol Radiation and Transport (GOCART). Features of Earth’s surface like rocks, vegetation, and uneven soil all influence how much dust the wind can kick up. As a result, both the amount of dust in the air and the direction that windblown dust travels are often governed by what’s on the ground. GOCART’s ability to model these surface features will improve the accuracy of the forecasting system, said Barry Baker, an atmospheric physicist and lead of chemical modeling for the National Oceanic and Atmospheric Administration who led the research to operation transition of FENGSHA for NOAA’s oceanic and atmospheric research team. The ultimate goal, though, he added, is a geostationary satellite. Polar-orbiting satellites pass over each spot of the globe twice a day; a geostationary satellite could hover over the U.S. and monitor dust around the clock, tracking storms as they develop and grow. 

An image captured by the VIIRS instrument on the NOAA-20 satellite shows dust from the Saharan desert blowing west over the Atlantic
Each year, 182 million tons of dust escapes into the atmosphere from the Sahara. This image captured by the VIIRS instrument on the NOAA-20 satellite captures the tremendous scale of African dust. Credit: NASA Earth Observatory.

Despite its hazards, windblown dust is a fundamental feature of the atmosphere and a critical ingredient for life on Earth. Dust from the Saharan Desert carries life-sustaining nutrients across the Atlantic Ocean to the Amazon rainforest, roughly 1,600 miles away. It also feeds the vast algal ecosystems that teem near the surface of Earth’s oceans, which in turn support a diverse menagerie of marine life. Even if we could rid the planet of dust, we would not want to.

“There’s no way to contain the situation; you can’t just eliminate the desert,” Tong said. “But what we can do is increase awareness and try to help those who are impacted most.”

Share

Details

Last Updated
Nov 15, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Psyche Delivers First Images and Other Data
      This mosaic was made from “first light” images acquired Dec. 4 by both of the cameras on NASA’s Psyche spacecraft. The star field lies in the constellation Pisces. Credits: NASA/JPL-Caltech/ASU The mission team has celebrated several successes since its launch from Kennedy Space Center on Oct. 13. The latest is the operation of the spacecraft’s cameras.
      NASA’s Psyche spacecraft is on a roll. In the eight weeks since it left Earth on Oct. 13, the orbiter has performed one successful operation after another, powering on scientific instruments, streaming data toward home, and setting a deep-space record with its electric thrusters. The latest achievement: On Monday, Dec. 4, the mission turned on Psyche’s twin cameras and retrieved the first images – a milestone called “first light.”
      View the full images here Already 16 million miles (26 million kilometers) from Earth, the spacecraft will arrive at its destination – the asteroid Psyche in the main asteroid belt between Mars and Jupiter – in 2029. The team wanted to test all of the science instruments early in the long journey to make sure they are working as intended, and to ensure there would be plenty of time to calibrate and adjust them as needed. The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images.
      Psyche’s “first light” images make up this mosaic showing a starfield in the constellation Pisces. A version of the mosaic annotated with the names of the stars shown is at bottom.NASA/JPL-Caltech/ASU “These initial images are only a curtain-opener,” said Arizona State University’s Jim Bell, the Psyche imager instrument lead. “For the team that designed and operates this sophisticated instrument, first light is a thrill. We start checking out the cameras with star images like these, then in 2026 we’ll take test images of Mars during the spacecraft’s flyby. And finally, in 2029 we’ll get our most exciting images yet – of our target asteroid Psyche. We look forward to sharing all of these visuals with the public.”
      The imager takes pictures through multiple color filters, all of which were tested in these initial observations. With the filters, the team will use photographs in wavelengths of light both visible and invisible to the human eye to help determine the composition of the metal-rich asteroid Psyche. The imager team will also use the data to create 3D maps of the asteroid to better understand its geology, which will give clues about Psyche’s history.
      Solar Surprise
      Earlier in the mission, in late October, the team powered on the magnetometer, which will provide crucial data to help determine how the asteroid formed. Evidence that the asteroid once had a magnetic field would be a strong indication that the body is a partial core of a planetesimal, a building block of an early planet. The information could help us better understand how our own planet formed.
      See the Psyche spacecraft in 3D on NASA's Eyes on the Solar System Shortly after being powered on, the magnetometer gave scientists an unexpected gift: It detected a solar eruption, a common occurrence called a coronal mass ejection, where the Sun expels large quantities of magnetized plasma. Since then, the team has seen several of these events and will continue to monitor space weather as the spacecraft travels to the asteroid.
      The good news is twofold. Data collected so far confirms that the magnetometer can precisely detect very small magnetic fields. It also confirms that the spacecraft is magnetically “quiet.” The electrical currents powering a probe of this size and complexity have the potential to generate magnetic fields that could interfere with science detections. Because Earth has its own powerful magnetic field, scientists obtained a much better measurement of the spacecraft magnetic field once it was in space.
      In the Zone
      On Nov. 8, amid all the work with the science instruments, the team fired up two of the four electric propulsion thrusters, setting a record: the first-ever use of Hall-effect thrusters in deep space. Until now, they’d been used only on spacecraft going as far as lunar orbit. By expelling charged atoms, or ions, of xenon gas, the ultra-efficient thrusters will propel the spacecraft to the asteroid (a 2.2-billion-mile, or 3.6-billion-kilometer journey) and help it maneuver in orbit.
      Less than a week later, on Nov. 14, the technology demonstration built into the spacecraft, an experiment called Deep Space Optical Communications (DSOC), set its own record. DSOC achieved first light by sending and receiving optical data from far beyond the Moon. The instrument beamed a near-infrared laser encoded with test data from nearly 10 million miles (16 million kilometers) away – the farthest-ever demonstration of optical communications.
      The Psyche team has also successfully powered on the gamma-ray detecting component of its third science instrument, the gamma-ray and neutron spectrometer. Next, the instrument’s neutron-detecting sensors will be turned on the week of Dec. 11. Together those capabilities will help the team determine the chemical elements that make up the asteroid’s surface material.
      More About the Mission
      Arizona State University (ASU) leads the Psyche mission. A division of Caltech in Pasadena, NASA’s Jet Propulsion Laboratory is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
      JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      For more information about NASA’s Psyche mission go to:
      http://www.nasa.gov/psyche
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2023-077
      Share
      Details
      Last Updated Dec 05, 2023 Related Terms
      Psyche Mission Asteroids Jet Propulsion Laboratory Psyche Asteroid The Solar System Explore More
      4 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula
      It’s that time of year again: winter! Here in the Northern Hemisphere, the cold, crisp…
      Article 4 days ago 4 min read NASA Orbiter Snaps Stunning Views of Mars Horizon
      Article 1 week ago 3 min read NASA’s Dragonfly to Proceed with Final Mission Design Work
      NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and…
      Article 1 week ago View the full article
    • By NASA
      Visualization of total carbon dioxide in the Earth’s atmosphere in 2021NASA NASA Administrator Bill Nelson, U.S. Environmental Protection Agency (EPA) Administrator Michael Regan, and other United States government leaders unveiled the U.S. Greenhouse Gas Center Monday during the 28th annual United Nations Climate Conference (COP28).
      “NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” said Nelson. “We’re bringing space to Earth to benefit communities across the country.”
      The U.S. Greenhouse Gas Center will serve as a hub for collaboration between agencies across the U.S. government as well as non-profit and private sector partners. Data, information, and computer models from observations from the International Space Station, various satellite and airborne missions, and ground stations are available online.  
      As the lead implementing agency of the center, NASA partnered with the EPA, National Institute of Standards and Technology, and National Oceanic and Atmospheric Administration. Science experts from each of these U.S. federal agencies curated this catalog of greenhouse gas datasets and analysis tools.  
      “A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” said Argyro Kavvada, center program manager at NASA Headquarters in Washington. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.”
      The center’s data catalog includes a curated collection of data sets that provide insights into greenhouse gas sources, sinks, emissions, and fluxes. Initial information in the center website is focused on three areas: 
      Estimates of greenhouse gas emissions from human activities  Naturally occurring greenhouse gas sources and sinks on land and in the ocean.  Large methane emission event identification and quantification, leveraging aircraft and space-based data    An example of a dataset is the methane gas information detected by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission. Located on the International Space Station, EMIT is an imaging spectrometer that measures light in visible and infrared wavelengths and thus can measure release of methane on Earth. 
      Built on open-source principles, the U.S. Greenhouse Gas Center’s datasets, related algorithms, and supporting code are fully open sourced. This allows anyone to test the data, algorithms, and results. The center also includes user support and an analysis hub for users to perform advanced data analysis with computational resources and an interactive, visual interface for storytelling. NASA encourages feedback and ideas on the center’s evolution. The center is part of a broader administration effort to enhance greenhouse gas information, outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System.
      For more information on NASA, visit: 
      https://www.nasa.gov
      -end- 
      Jackie McGuinness / Karen Fox
      Headquarters, Washington
      202-358-1600
      jackie.mcguiness@nasa.gov / karen.fox@nasa.gov


      View the full article
    • By European Space Agency
      Six years of hard work and dedication paid off in spectacular fashion today, as the Educational Irish Research Satellite, EIRSAT-1, successfully blasted off from Vandenberg Space Force Base, California. Hitching a ride on a Space-X Falcon-9 launcher, the tiny satellite – measuring just 10.7cm x 10.7cm x 22.7cm – has now made history as Ireland’s first satellite!
      View the full article
    • By NASA
      4 min read
      Google’s ‘A Passage of Water’ Brings NASA’s Water Data to Life
      As part of the long-standing partnership between NASA and Google, NASA worked with Google Arts & Culture and artist Yiyun Kang to create an interactive digital experience around global freshwater resources titled “A Passage of Water.” This immersive experience leverages data from the Gravity Recovery and Climate Experiment (GRACE) satellites and new high-resolution data from the Surface Water and Ocean Topography (SWOT) mission to illustrate how climate change is impacting Earth’s water cycle.
      A digital version of “A Passage of Water” will be released online on Thursday, Nov. 30, ahead of the beginning of the United Nations’ Climate Change Conference of Parties (COP 28) in Dubai, United Arab Emirates. Google also will host a physical installation of the visualization project in the Blue Zone at COP 28.
      “NASA is the U.S. space agency that provides end-to-end research about our home planet, and it is our job to inform the world about what we learn,” said Kate Calvin, NASA’s chief scientist and senior climate advisor in Washington. “Highlighting our Earth science data in the installation of ‘A Passage of Water’ is a unique way to share information, in a digestible way, around the important connection between climate change and the Earth’s water cycle.”
      The international Surface Water and Ocean Topography (SWOT) satellite, as shown in this illustration, is the first global mission surveying Earth’s surface water. SWOT’s high-resolution data helps scientists measure how Earth’s bodies of water change overtime. Credit: CNES. For six decades, NASA has been collecting data on Earth’s land, water, air, and climate. This data is used to inform decision-makers on ways to mitigate, adapt and respond to climate change. All of NASA’s Earth science data is available for scientists and the public to access in a variety of ways.
      “NASA studies our home planet and its interconnected systems more than any other planet in our universe,” said Karen St. Germain, director of NASA’s Earth Science Division. “’A Passage of Water’ provides an opportunity to highlight the public availability of SWOT data and other NASA Earth science data to tell meaningful stories, improve awareness, and help everyday people who have to make real decisions in their homes, businesses, and communities.”
      A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), SWOT is measuring the height of nearly all water on Earth’s surface, providing one of the most detailed, comprehensive views yet of the planet’s freshwater bodies. SWOT provides insights into how the ocean influences climate change and how a warming world affects lakes, rivers, and reservoirs.
      NASA studies our home planet and its interconnected systems more than any other planet in our universe.
      Karen St. Germain
      Director, NASA’s Earth Science Division
      “The detail that SWOT is providing on the world’s oceans and fresh water is game-changing. We’re only just getting started with respect to data from this satellite and I’m looking forward to seeing where the information takes us,” said Ben Hamlington, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California.
      The Google project also uses data from the GRACE and GRACE Follow-On missions –the former is a joint effort between NASA and the German Aerospace Center (DLR), while the latter is a collaboration between NASA and the German Research Centre for Geosciences (GFZ). GRACE tracked localized changes to Earth’s mass distribution, caused by phenomena including the movement of water across the planet from 2002 to 2017. GRACE-FO came online in 2018 and is currently in operation.
      As with GRACE before it, the GRACE-FO mission monitors changes in ice sheets and glaciers, near-surface and underground water storage, the amount of water in large lakes and rivers, as well as changes in sea level and ocean currents, providing an integrated view of how Earth’s water cycle and energy balance are evolving.
      “A Passage of Water” is the most recent digital experience created under NASA’s Space Act Agreement with Google, with resulting content to be made widely available to the public free of charge on Google’s web platforms. This collaboration is part of a six-project agreement series that aims to share NASA’s content with audiences in new and engaging ways.
      Learn more about SWOT, GRACE, GRACE-FO, and NASA’s Earth Science missions at:
      https://science.nasa.gov/earth
      To learn more about NASA Partnerships, visit:
      https://www.nasa.gov/partnerships
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 30, 2023 Editor Contact Related Terms
      Earth GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) SWOT (Surface Water and Ocean Topography) Water on Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
    • By NASA
      5 Min Read Webb Study Reveals Rocky Planets Can Form in Extreme Environments
      An international team of astronomers has used NASA’s James Webb Space Telescope to provide the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought. 
      Image: Protoplanetary Disk (Artist Concept)
      This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming. ESO/L. Calçada These are the first results from the eXtreme Ultraviolet Environments (XUE) James Webb Space Telescope program, which focuses on the characterization of planet-forming disks (vast, spinning clouds of gas, dust, and chunks of rock where planets form and evolve) in massive star-forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is important for scientists to gain insights into the diversity of the different types of exoplanets.
      The XUE program targets a total of 15 disks in three areas of the Lobster Nebula (also known as NGC 6357), a large emission nebula roughly 5,500 light-years away from Earth in the constellation Scorpius. The Lobster Nebula is one of the youngest and closest massive star-formation complexes, and is host to some of the most massive stars in our galaxy. Massive stars are hotter, and therefore emit more ultraviolet (UV) radiation. This can disperse the gas, making the expected disk lifetime as short as a million years. Thanks to Webb, astronomers can now study the effect of UV radiation on the inner rocky-planet forming regions of protoplanetary disks around stars like our Sun.
      “Webb is the only telescope with the spatial resolution and sensitivity to study planet-forming disks in massive star-forming regions,” said team lead María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy in Germany.
      Astronomers aim to characterize the physical properties and chemical composition of the rocky-planet-forming regions of disks in the Lobster Nebula using the Medium Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This first result focuses on the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24.
      “Only the MIRI wavelength range and spectral resolution allow us to probe the molecular inventory and physical conditions of the warm gas and dust where rocky planets form,” added team member Arjan Bik of Stockholm University in Sweden.
      Image: XUE 1 spectrum detects water
      This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. The inner disk around XUE 1 revealed signatures of water (highlighted here in blue), as well as acetylene (C2H2, green), hydrogen cyanide (HCN, brown), and carbon dioxide (CO2, red). As indicated, some of the emission detected was weaker than some of the predicted models, which might imply a small outer disk radius.NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI) Due to its location near several massive stars in NGC 6357, scientists expect XUE 1 to have been constantly exposed to high amounts of ultraviolet radiation throughout its life. However, in this extreme environment the team still detected a range of molecules that are the building blocks for rocky planets.
      “We find that the inner disk around XUE 1 is remarkably similar to those in nearby star-forming regions,” said team member Rens Waters of Radboud University in the Netherlands. “We’ve detected water and other molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. However, the emission found was weaker than some models predicted. This might imply a small outer disk radius.”
      “We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions,” added Lars Cuijpers of Radboud University. The team also found small, partially crystalline silicate dust at the disk’s surface. This is considered to be the building blocks of rocky planets. 
      These results are good news for rocky planet formation, as the science team finds that the conditions in the inner disk resemble those found in the well-studied disks located in nearby star-forming regions, where only low-mass stars form. This suggests that rocky planets can form in a much broader range of environments than previously believed.
      Image: XUE 1 Spectrum detects CO
      This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. It features the observed signatures of carbon monoxide spanning 4.95 to 5.15 microns. NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI)
      The team notes that the remaining observations from the XUE program are crucial to establish the commonality of these conditions.
      “XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is,” said Ramírez-Tannus. “We will observe other disks in the same region to determine the frequency with which these conditions can be observed.”
      These results have been published in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov
      NASA’s  Goddard Space Flight Center, , Greenbelt, Md.
      Bethany Downer –  Bethany.Downer@esawebb.org
      ESA/Webb Chief Science Communications Officer
      Christine Pulliam cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.

      Downloads
      Download full resolution images for this article from the Space Telescope Science Institute.
      Research results published in The Astrophysical Journal.

      Related Information
      Terrestrial Exoplanets
      Exoplanets 101
      LIfe and Death of Planetary Systems
      Webb Mission – https://science.nasa.gov/mission/webb/
      Webb News – https://science.nasa.gov/mission/webb/latestnews/
      Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

      Related For Kids
      What is a Planet?
      What is an Exoplanet?
      How Many Solar Systems are in our Galaxy?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Exoplanets
      Overview Most of the exoplanets discovered so far are in a relatively small region of our galaxy, the Milky Way.…
      Stars
      Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.…
      Galaxies
      Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make…
      Share
      Details
      Last Updated Nov 30, 2023 Editorsteve sabiaContactLaura Betz Related Terms
      James Webb Space Telescope (JWST) Exoplanets Goddard Space Flight Center Missions Nebulae Planetary Nebulae Stars Terrestrial Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...