Members Can Post Anonymously On This Site
Satellite Data Can Help Limit the Dangers of Windblown Dust
-
Similar Topics
-
By NASA
5 Min Read NASA’s Psyche Delivers First Images and Other Data
This mosaic was made from “first light” images acquired Dec. 4 by both of the cameras on NASA’s Psyche spacecraft. The star field lies in the constellation Pisces. Credits: NASA/JPL-Caltech/ASU The mission team has celebrated several successes since its launch from Kennedy Space Center on Oct. 13. The latest is the operation of the spacecraft’s cameras.
NASA’s Psyche spacecraft is on a roll. In the eight weeks since it left Earth on Oct. 13, the orbiter has performed one successful operation after another, powering on scientific instruments, streaming data toward home, and setting a deep-space record with its electric thrusters. The latest achievement: On Monday, Dec. 4, the mission turned on Psyche’s twin cameras and retrieved the first images – a milestone called “first light.”
View the full images here Already 16 million miles (26 million kilometers) from Earth, the spacecraft will arrive at its destination – the asteroid Psyche in the main asteroid belt between Mars and Jupiter – in 2029. The team wanted to test all of the science instruments early in the long journey to make sure they are working as intended, and to ensure there would be plenty of time to calibrate and adjust them as needed. The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images.
Psyche’s “first light” images make up this mosaic showing a starfield in the constellation Pisces. A version of the mosaic annotated with the names of the stars shown is at bottom.NASA/JPL-Caltech/ASU “These initial images are only a curtain-opener,” said Arizona State University’s Jim Bell, the Psyche imager instrument lead. “For the team that designed and operates this sophisticated instrument, first light is a thrill. We start checking out the cameras with star images like these, then in 2026 we’ll take test images of Mars during the spacecraft’s flyby. And finally, in 2029 we’ll get our most exciting images yet – of our target asteroid Psyche. We look forward to sharing all of these visuals with the public.”
The imager takes pictures through multiple color filters, all of which were tested in these initial observations. With the filters, the team will use photographs in wavelengths of light both visible and invisible to the human eye to help determine the composition of the metal-rich asteroid Psyche. The imager team will also use the data to create 3D maps of the asteroid to better understand its geology, which will give clues about Psyche’s history.
Solar Surprise
Earlier in the mission, in late October, the team powered on the magnetometer, which will provide crucial data to help determine how the asteroid formed. Evidence that the asteroid once had a magnetic field would be a strong indication that the body is a partial core of a planetesimal, a building block of an early planet. The information could help us better understand how our own planet formed.
See the Psyche spacecraft in 3D on NASA's Eyes on the Solar System Shortly after being powered on, the magnetometer gave scientists an unexpected gift: It detected a solar eruption, a common occurrence called a coronal mass ejection, where the Sun expels large quantities of magnetized plasma. Since then, the team has seen several of these events and will continue to monitor space weather as the spacecraft travels to the asteroid.
The good news is twofold. Data collected so far confirms that the magnetometer can precisely detect very small magnetic fields. It also confirms that the spacecraft is magnetically “quiet.” The electrical currents powering a probe of this size and complexity have the potential to generate magnetic fields that could interfere with science detections. Because Earth has its own powerful magnetic field, scientists obtained a much better measurement of the spacecraft magnetic field once it was in space.
In the Zone
On Nov. 8, amid all the work with the science instruments, the team fired up two of the four electric propulsion thrusters, setting a record: the first-ever use of Hall-effect thrusters in deep space. Until now, they’d been used only on spacecraft going as far as lunar orbit. By expelling charged atoms, or ions, of xenon gas, the ultra-efficient thrusters will propel the spacecraft to the asteroid (a 2.2-billion-mile, or 3.6-billion-kilometer journey) and help it maneuver in orbit.
Less than a week later, on Nov. 14, the technology demonstration built into the spacecraft, an experiment called Deep Space Optical Communications (DSOC), set its own record. DSOC achieved first light by sending and receiving optical data from far beyond the Moon. The instrument beamed a near-infrared laser encoded with test data from nearly 10 million miles (16 million kilometers) away – the farthest-ever demonstration of optical communications.
The Psyche team has also successfully powered on the gamma-ray detecting component of its third science instrument, the gamma-ray and neutron spectrometer. Next, the instrument’s neutron-detecting sensors will be turned on the week of Dec. 11. Together those capabilities will help the team determine the chemical elements that make up the asteroid’s surface material.
More About the Mission
Arizona State University (ASU) leads the Psyche mission. A division of Caltech in Pasadena, NASA’s Jet Propulsion Laboratory is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.
Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
For more information about NASA’s Psyche mission go to:
http://www.nasa.gov/psyche
News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
2023-077
Share
Details
Last Updated Dec 05, 2023 Related Terms
Psyche Mission Asteroids Jet Propulsion Laboratory Psyche Asteroid The Solar System Explore More
4 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula
It’s that time of year again: winter! Here in the Northern Hemisphere, the cold, crisp…
Article 4 days ago 4 min read NASA Orbiter Snaps Stunning Views of Mars Horizon
Article 1 week ago 3 min read NASA’s Dragonfly to Proceed with Final Mission Design Work
NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and…
Article 1 week ago View the full article
-
By NASA
Visualization of total carbon dioxide in the Earth’s atmosphere in 2021NASA NASA Administrator Bill Nelson, U.S. Environmental Protection Agency (EPA) Administrator Michael Regan, and other United States government leaders unveiled the U.S. Greenhouse Gas Center Monday during the 28th annual United Nations Climate Conference (COP28).
“NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” said Nelson. “We’re bringing space to Earth to benefit communities across the country.”
The U.S. Greenhouse Gas Center will serve as a hub for collaboration between agencies across the U.S. government as well as non-profit and private sector partners. Data, information, and computer models from observations from the International Space Station, various satellite and airborne missions, and ground stations are available online.
As the lead implementing agency of the center, NASA partnered with the EPA, National Institute of Standards and Technology, and National Oceanic and Atmospheric Administration. Science experts from each of these U.S. federal agencies curated this catalog of greenhouse gas datasets and analysis tools.
“A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” said Argyro Kavvada, center program manager at NASA Headquarters in Washington. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.”
The center’s data catalog includes a curated collection of data sets that provide insights into greenhouse gas sources, sinks, emissions, and fluxes. Initial information in the center website is focused on three areas:
Estimates of greenhouse gas emissions from human activities Naturally occurring greenhouse gas sources and sinks on land and in the ocean. Large methane emission event identification and quantification, leveraging aircraft and space-based data An example of a dataset is the methane gas information detected by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission. Located on the International Space Station, EMIT is an imaging spectrometer that measures light in visible and infrared wavelengths and thus can measure release of methane on Earth.
Built on open-source principles, the U.S. Greenhouse Gas Center’s datasets, related algorithms, and supporting code are fully open sourced. This allows anyone to test the data, algorithms, and results. The center also includes user support and an analysis hub for users to perform advanced data analysis with computational resources and an interactive, visual interface for storytelling. NASA encourages feedback and ideas on the center’s evolution. The center is part of a broader administration effort to enhance greenhouse gas information, outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System.
For more information on NASA, visit:
https://www.nasa.gov
-end-
Jackie McGuinness / Karen Fox
Headquarters, Washington
202-358-1600
jackie.mcguiness@nasa.gov / karen.fox@nasa.gov
View the full article
-
By European Space Agency
Six years of hard work and dedication paid off in spectacular fashion today, as the Educational Irish Research Satellite, EIRSAT-1, successfully blasted off from Vandenberg Space Force Base, California. Hitching a ride on a Space-X Falcon-9 launcher, the tiny satellite – measuring just 10.7cm x 10.7cm x 22.7cm – has now made history as Ireland’s first satellite!
View the full article
-
By NASA
4 min read
Google’s ‘A Passage of Water’ Brings NASA’s Water Data to Life
As part of the long-standing partnership between NASA and Google, NASA worked with Google Arts & Culture and artist Yiyun Kang to create an interactive digital experience around global freshwater resources titled “A Passage of Water.” This immersive experience leverages data from the Gravity Recovery and Climate Experiment (GRACE) satellites and new high-resolution data from the Surface Water and Ocean Topography (SWOT) mission to illustrate how climate change is impacting Earth’s water cycle.
A digital version of “A Passage of Water” will be released online on Thursday, Nov. 30, ahead of the beginning of the United Nations’ Climate Change Conference of Parties (COP 28) in Dubai, United Arab Emirates. Google also will host a physical installation of the visualization project in the Blue Zone at COP 28.
“NASA is the U.S. space agency that provides end-to-end research about our home planet, and it is our job to inform the world about what we learn,” said Kate Calvin, NASA’s chief scientist and senior climate advisor in Washington. “Highlighting our Earth science data in the installation of ‘A Passage of Water’ is a unique way to share information, in a digestible way, around the important connection between climate change and the Earth’s water cycle.”
The international Surface Water and Ocean Topography (SWOT) satellite, as shown in this illustration, is the first global mission surveying Earth’s surface water. SWOT’s high-resolution data helps scientists measure how Earth’s bodies of water change overtime. Credit: CNES. For six decades, NASA has been collecting data on Earth’s land, water, air, and climate. This data is used to inform decision-makers on ways to mitigate, adapt and respond to climate change. All of NASA’s Earth science data is available for scientists and the public to access in a variety of ways.
“NASA studies our home planet and its interconnected systems more than any other planet in our universe,” said Karen St. Germain, director of NASA’s Earth Science Division. “’A Passage of Water’ provides an opportunity to highlight the public availability of SWOT data and other NASA Earth science data to tell meaningful stories, improve awareness, and help everyday people who have to make real decisions in their homes, businesses, and communities.”
A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), SWOT is measuring the height of nearly all water on Earth’s surface, providing one of the most detailed, comprehensive views yet of the planet’s freshwater bodies. SWOT provides insights into how the ocean influences climate change and how a warming world affects lakes, rivers, and reservoirs.
NASA studies our home planet and its interconnected systems more than any other planet in our universe.
Karen St. Germain
Director, NASA’s Earth Science Division
“The detail that SWOT is providing on the world’s oceans and fresh water is game-changing. We’re only just getting started with respect to data from this satellite and I’m looking forward to seeing where the information takes us,” said Ben Hamlington, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California.
The Google project also uses data from the GRACE and GRACE Follow-On missions –the former is a joint effort between NASA and the German Aerospace Center (DLR), while the latter is a collaboration between NASA and the German Research Centre for Geosciences (GFZ). GRACE tracked localized changes to Earth’s mass distribution, caused by phenomena including the movement of water across the planet from 2002 to 2017. GRACE-FO came online in 2018 and is currently in operation.
As with GRACE before it, the GRACE-FO mission monitors changes in ice sheets and glaciers, near-surface and underground water storage, the amount of water in large lakes and rivers, as well as changes in sea level and ocean currents, providing an integrated view of how Earth’s water cycle and energy balance are evolving.
“A Passage of Water” is the most recent digital experience created under NASA’s Space Act Agreement with Google, with resulting content to be made widely available to the public free of charge on Google’s web platforms. This collaboration is part of a six-project agreement series that aims to share NASA’s content with audiences in new and engaging ways.
Learn more about SWOT, GRACE, GRACE-FO, and NASA’s Earth Science missions at:
https://science.nasa.gov/earth
To learn more about NASA Partnerships, visit:
https://www.nasa.gov/partnerships
Katherine Rohloff
Headquarters, Washington
202-358-1600
katherine.a.rohloff@nasa.gov
Share
Details
Last Updated Nov 30, 2023 Editor Contact Related Terms
Earth GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) SWOT (Surface Water and Ocean Topography) Water on Earth Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Explore Earth Science
Earth Science Data
View the full article
-
By NASA
5 Min Read Webb Study Reveals Rocky Planets Can Form in Extreme Environments
An international team of astronomers has used NASA’s James Webb Space Telescope to provide the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.
Image: Protoplanetary Disk (Artist Concept)
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming. ESO/L. Calçada These are the first results from the eXtreme Ultraviolet Environments (XUE) James Webb Space Telescope program, which focuses on the characterization of planet-forming disks (vast, spinning clouds of gas, dust, and chunks of rock where planets form and evolve) in massive star-forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is important for scientists to gain insights into the diversity of the different types of exoplanets.
The XUE program targets a total of 15 disks in three areas of the Lobster Nebula (also known as NGC 6357), a large emission nebula roughly 5,500 light-years away from Earth in the constellation Scorpius. The Lobster Nebula is one of the youngest and closest massive star-formation complexes, and is host to some of the most massive stars in our galaxy. Massive stars are hotter, and therefore emit more ultraviolet (UV) radiation. This can disperse the gas, making the expected disk lifetime as short as a million years. Thanks to Webb, astronomers can now study the effect of UV radiation on the inner rocky-planet forming regions of protoplanetary disks around stars like our Sun.
“Webb is the only telescope with the spatial resolution and sensitivity to study planet-forming disks in massive star-forming regions,” said team lead María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy in Germany.
Astronomers aim to characterize the physical properties and chemical composition of the rocky-planet-forming regions of disks in the Lobster Nebula using the Medium Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This first result focuses on the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24.
“Only the MIRI wavelength range and spectral resolution allow us to probe the molecular inventory and physical conditions of the warm gas and dust where rocky planets form,” added team member Arjan Bik of Stockholm University in Sweden.
Image: XUE 1 spectrum detects water
This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. The inner disk around XUE 1 revealed signatures of water (highlighted here in blue), as well as acetylene (C2H2, green), hydrogen cyanide (HCN, brown), and carbon dioxide (CO2, red). As indicated, some of the emission detected was weaker than some of the predicted models, which might imply a small outer disk radius.NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI) Due to its location near several massive stars in NGC 6357, scientists expect XUE 1 to have been constantly exposed to high amounts of ultraviolet radiation throughout its life. However, in this extreme environment the team still detected a range of molecules that are the building blocks for rocky planets.
“We find that the inner disk around XUE 1 is remarkably similar to those in nearby star-forming regions,” said team member Rens Waters of Radboud University in the Netherlands. “We’ve detected water and other molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. However, the emission found was weaker than some models predicted. This might imply a small outer disk radius.”
“We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions,” added Lars Cuijpers of Radboud University. The team also found small, partially crystalline silicate dust at the disk’s surface. This is considered to be the building blocks of rocky planets.
These results are good news for rocky planet formation, as the science team finds that the conditions in the inner disk resemble those found in the well-studied disks located in nearby star-forming regions, where only low-mass stars form. This suggests that rocky planets can form in a much broader range of environments than previously believed.
Image: XUE 1 Spectrum detects CO
This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. It features the observed signatures of carbon monoxide spanning 4.95 to 5.15 microns. NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI)
The team notes that the remaining observations from the XUE program are crucial to establish the commonality of these conditions.
“XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is,” said Ramírez-Tannus. “We will observe other disks in the same region to determine the frequency with which these conditions can be observed.”
These results have been published in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, , Greenbelt, Md.
Bethany Downer – Bethany.Downer@esawebb.org
ESA/Webb Chief Science Communications Officer
Christine Pulliam cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Downloads
Download full resolution images for this article from the Space Telescope Science Institute.
Research results published in The Astrophysical Journal.
Related Information
Terrestrial Exoplanets
Exoplanets 101
LIfe and Death of Planetary Systems
Webb Mission – https://science.nasa.gov/mission/webb/
Webb News – https://science.nasa.gov/mission/webb/latestnews/
Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/
Related For Kids
What is a Planet?
What is an Exoplanet?
How Many Solar Systems are in our Galaxy?
What Is a Galaxy?
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Overview Most of the exoplanets discovered so far are in a relatively small region of our galaxy, the Milky Way.…
Stars
Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.…
Galaxies
Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make…
Share
Details
Last Updated Nov 30, 2023 Editorsteve sabiaContactLaura Betz Related Terms
James Webb Space Telescope (JWST) Exoplanets Goddard Space Flight Center Missions Nebulae Planetary Nebulae Stars Terrestrial Exoplanets The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.