Jump to content

Peter Griffith: Diving Into Carbon Cycle Science


NASA

Recommended Posts

  • Publishers

5 min read

Peter Griffith: Diving Into Carbon Cycle Science

Peter Griffith, a man with short gray hair, smiles and poses for an official portrait. He wears a black collared shirt with the NASA logo on his left chest. A huge model of Earth is visible out of focus behind him in a large, sunlit room.
Dr. Peter Griffith is the director of NASA’s Carbon Cycle and Ecosystems Office. “As a scientist, I started off in the water and then gradually moved to on top of the water, and then ultimately went up into the air and into space, at least with the instrument eyes that we have on the world,” he said. “In some respects, I was a carbon cycle scientist since before it was cool.”
NASA / Angeles Miron

Name: Peter Griffith

Title: Director, NASA Carbon Cycle and Ecosystems Office

Organization: Biospheric Sciences Laboratory, Code 618

What’s your official role at Goddard?

I lead NASA’s Carbon Cycle and Ecosystems Office, which is in the Biospheric Sciences Laboratory at Goddard. We answer to NASA Headquarters, we support the Carbon Cycle and Ecosystems Focus area, and we support different elements of the funded program that comes out of that. To a great extent, we support the terrestrial ecology program, but also ocean biology and biogeochemistry, biodiversity, the Carbon Monitoring System, and some application work.

A lot of our work consists of supporting field campaigns. These are activities where dozens and sometimes hundreds of investigators go out into amazing parts of the world and do the work on the ground – or on the water – to have an up-close view of what’s happening in critical parts of the planet and couple that fine-scale information with observations from remote sensing instruments on aircraft and ultimately on satellites.

What do you do on a day-to-day basis?

One of the really fun things I get to do is coordinate with our teams that are out in the field and the flight crews. We’ve got an aircraft, a relatively small twin-engine turboprop that’s flown in Alaska with an instrument called AVIRIS, a very fancy camera that sees lots of colors and makes images from it that have far more wavelengths than what your cell phone camera has in it. It’s called an imaging spectrometer. We fly that to look at vegetation characteristics and methane emissions across Alaska and some parts of Canada.

A couple months ago, I got to go up and spend some time in Fairbanks working with the instrument crew from NASA’s Jet Propulsion Laboratory in Southern California and the flight crew and fine-tune when and where we would fly each day. I don’t do lab work or very much field work at this point, so an awful lot of it is coordination with scientists and engineers to help us go to the right places and measure the right things.

How did your path to Goddard start?

I was a kid growing up in the in the Apollo program era, and I lived in my parents’ house on a lake in Central Florida about 50 miles from Cape Canaveral. A lot of my childhood consisted of catching alligators in the lake and watching Saturn V rockets take off. It was very exciting.

Because I was a giant nerd with big, thick glasses, being an astronaut was completely off the table, I knew that. But that whole thing about swimming in the lake took me in, ultimately, into being a scuba diver and going into marine biology. As a scientist, I started off in the water and then gradually moved to on top of the water, and then, ultimately went up into the air and into space, at least with the instrument eyes that we have on the world. In some respects, I was a carbon cycle scientist since before it was cool.

Dr. Peter Griffith stands with two
Peter Griffith, Brian Howard and Xanthe Walker discuss field work in Denali National Park during a 2016 expedition.
NASA / Kate Ramsayer

Do you have any cool stories from the field?

Oh, boy. We have several 100 investigators that have been funded over the years and probably 100 or more who are involved in one way or another, and I probably credit a lot of them for having the coolest stories, But in my own role, I’ve had conversations and consultations with federal and state and local folks in Alaska and Canada about where and when we fly our airborne instruments, so in the course of that, I’ve had the chance to talk with representatives from First Nations about what their concerns are. It’s been really interesting for me, very broadening of my knowledge from my narrow view as a scientist. We like to think we know a lot of things, but in talking with many of our Indigenous partners, I continue to learn that there are a lot of things that we don’t know, and that I don’t know.

One of the great things about this job is getting to learn new things all the time. Sometimes it’s about new satellites or new ways of using different kinds of radar and lidar to observe the planet. That is certainly a stimulating part of the job, but another really stimulating part of the job is getting to know people and getting to see their world and hear them explain how they see the world through their eyes.

Do you ever miss doing field work?

That’s a really good question. It’s a challenge because, there are a lot of sacrifices that you make as a field scientist. It may put you a very long way away from your family, for instance. One of the reasons, actually, that I moved into project management was that it gave me a better work-life balance at a time when I had small kids.

It’s been so fun working at Goddard Space Flight Center. There are still times when – and particularly after having to work remotely for a while – that I come on campus and see the great, big NASA emblem on the side of the High Bay Clean Room building and I go, “I can’t believe I get to work here.”

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Ananya Udaygiri
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:

Rob Garner

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 08, 2023
Editor
Jessica Evans
Contact
Rob Garner
rob.garner@nasa.gov
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ASIA-AQ DC-8 aircraft flies over Bangkok, Thailand to monitor seasonal haze from fire smoke and urban pollution. Photo credit: Rafael Luis Méndez Peña. Tracking the spread of harmful air pollutants across large regions requires aircraft, satellites, and diverse team of scientists. NASA’s global interest in the threat of air pollution extends into Asia, where it works with partners on the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ).  This international mission integrates satellite data and aircraft measurements with local air quality ground monitoring and modeling efforts across Asia.
      Orchestrating a mission of this scale requires complicated agreements between countries, the coordination of aircraft and scientific instrumentation, and the mobilization of scientists from across the globe. To make this possible, ARC’s Earth Science Project Office (ESPO) facilitated each phase of the campaign, from site preparation and aircraft deployment to sensitive data management and public outreach.
      “Successfully meeting the ASIA-AQ mission logistics requirements was an incredible effort in an uncertainty-filled environment and a very constrained schedule to execute and meet those requirements,” explains ASIA-AQ Project Manager Jhony Zavaleta. “Such effort drew on the years long experience on international shipping expertise, heavy equipment operations, networking and close coordination with international service providers and all of the U.S. embassies at each of our basing locations.”
      Map of planned ASIA-AQ operational regions. Yellow circles indicate the original areas of interest for flight sampling. The overlaid colormap shows annual average nitrogen dioxide (NO2) concentrations observed by the TROPOMI satellite with red colors indicating the most polluted locations. Understanding Air Quality Globally
      ASIA-AQ benefits our understanding of air quality and the factors controlling its daily variability by investigating the ways that air quality can be observed and quantified. The airborne measurements collected during the campaign are directly integrated with existing satellite observations of air quality, local air quality monitoring networks, other available ground assets, and models to provide a level of detail otherwise unavailable to advance understanding of regional air quality and improve future integration of satellite and ground monitoring information.
      ESPO’s Mission-Critical Contributions
      Facilitating collaboration between governmental agencies and the academic community by executing project plans, navigating bureaucratic hurdles, and consensus building. Mission planning for two NASA aircraft. AFRC DC-8 completed 16 science flights, totaling 125 flight hours. The LaRC GIII completed 35 science flights, totaling 157.7 flight hours. Enabling international fieldwork and workforce mobilization by coordinating travel, securing authorizations and documentation, and maintaining relationships with local research partners. Managing outreach to local governments and schools. ASIA-AQ team members showcased tools used for air quality science to elementary/middle/high school students. Recent news feature here. View of ASIA-AQ aircraft in Bangkok, Thailand. ESPO staff from left to right: Dan Chirica, Marilyn Vasques, Sam Kim, Jhony Zavaleta, and Andrian Liem. Aircraft from left to right: Korean Meteorological Agency/National Institute of Meteorological Sciences, NASA LaRC GIII, NSASA DC-8, (2) Hanseo University, Sunny Air (private aircraft contracted by Korean Meteorological Agency). Photo: Rafael Mendez Peña. The flying laboratory of NASA’s DC-8
      NASA flew its DC-8 aircraft, picture above, equipped with instrumentation to monitor the quality, source, and movement of harmful air pollutants. Scientists onboard used the space as a laboratory to analyze data in real-time and share it with a network of researchers who aim to tackle this global issue.
      “Bringing the DC-8 flying laboratory and US researchers to Asian countries not only advances atmospheric research but also fosters international scientific collaboration and education,” said ESPO Project Specialist Vidal Salazar. “Running a campaign like ASIA AQ also opens doors for shared knowledge and exposes local communities to cutting-edge research.”
      Fostering Partnerships Through Expertise and Goodwill
      International collaboration fostered through this campaign contributes to an ongoing dialogue about air pollution between Asian countries.
      “NASA’s continued scientific and educational activities around the world are fundamental to building relationships with partnering countries,” said ESPO Director Marilyn Vasques. “NASA’s willingness to share data and provide educational opportunities to locals creates goodwill worldwide.”
      The role of ESPO in identifying, strategizing, and executing on project plans across the globe created a path for multi-sectoral community engagement on air quality. These global efforts to improve air quality science directly inform efforts to save lives from this hazard that affects all.
      View the full article
    • By NASA
      4 min read
      Marshall Research Scientist Enables Large-Scale Open Science
      Rahul Ramachandran is a senior research scientist at NASA’s Marshall Space Flight Center. NASA By Jessica Barnett 
      Most people use tools at work, whether it’s a hammer, a pencil, or a computer. Very few seek a doctorate degree in creating new tools for the job.
      Using that degree to make it easier for people around the world to access and use the vast amounts of data gathered by NASA? Well, that might just be unheard of if you didn’t know someone like Rahul Ramachandran, a senior research scientist in the Earth Science branch at NASA’s Marshall Space Flight Center.
      “My undergrad was in mechanical engineering. I wanted to do industrial engineering, so I came to the U.S. for that, but I didn’t like the field that much,” Ramachandran explained. “It was by chance somebody suggested meteorology.”
      That led him to learn about atmospheric science as well, but it was the 1990s and the technology of the time was very limiting. So, Ramachandran set out to learn more about computers and how to better analyze data.
      “The limitations effectively prompted me to get a degree in computer science,” he said. “I now had science, engineering, and computer science in my background. Then, over the years, I got more and more interested in the tools and capabilities that can help not only manage data but also how you extract knowledge from these large datasets.”
      Fast forward to today, and Ramachandran is an award-winning scientist helping to ensure the vast amounts of data collected by NASA are accessible and searchable for scientists around the world.
      “I never would have thought that I could ever get a job working at an agency like NASA,” he said. “You get to work with some of the smartest people in the world, and you get to work on really hard problems. I think that’s what makes it so intellectually stimulating.”
      Over the course of his career, he has worked on many different projects focused on scientific data management, designed frameworks for large scale scientific analysis, and developed machine learning applications. Recently, he worked with team members at IBM Research to create a geospatial AI foundation model that could turn NASA satellite data into maps of natural disasters or other environmental changes. He also established the Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA, which supports NASA’s Earth Science Data Systems Program by collaborating with other agencies and partners to boost the scientific benefits of data collected by NASA’s missions and experiments.
      Ramachandran received the 2023 Greg Leptoukh Lecture award for his accomplishments, an honor he attributes in large part to the many collaborators and mentors he’s had over the years.
      During his presentation, Ramachandran spoke about the ways in which artificial intelligence can help NASA continue to adapt and support open science.
      “We’ve seen what people can do with ChatGPT, which is built on a language foundation model, but there are AI foundation models for science that can be adapted into analyzing scientific data so we can augment what we are doing now in a much more efficient manner,” he said. “It requires a bit of a change in people’s mindset. How do we rethink our processes? How do we rethink a strategy for managing data? How will people search and analyze data information differently? All those things have to be thought of with a different perspective now.”
      Such work will have benefits not only for NASA but for those who use the data collected by the agency. Ramachandran said he recently got an email from someone in Africa who was able to use NASA’s data and the geospatial AI foundation model for detecting locust breeding grounds on the continent.
      “NASA has produced valuable science data that we make available to the community to use,” Ramachandran said. “I think the future would be that we not only provide the data, but we also provide these AI models that allow the science community to use the data effectively, whether it’s doing basic research or building applications like the locust breeding ground prediction.”
      As that future nears, Ramachandran and his team will be ready to help others in the science community find the data they need to learn and build the tools they’ll use for years to come.
      Share








      Details
      Last Updated Jun 20, 2024 Related Terms
      Open Science Explore More
      2 min read NASA’s Repository Supports Research of Commercial Astronaut Health  


      Article


      1 week ago
      4 min read NASA, IBM Research to Release New AI Model for Weather, Climate


      Article


      4 weeks ago
      4 min read AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change


      Article


      2 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Anthony Mackie Asks NASA About Ocean Science
    • By NASA
      Supernova remnant 3C 58.X-ray: NASA/CXC/ICE-CSIC/A. Marino et al.; Optical: SDSS; Image Processing: NASA/CXC/SAO/J. Major The supernova remnant 3C 58 contains a spinning neutron star, known as PSR J0205+6449, at its center. Astronomers studied this neutron star and others like it to probe the nature of matter inside these very dense objects. A new study, made using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton, reveals that the interiors of neutron stars may contain a type of ultra-dense matter not found anywhere else in the Universe.
      In this image of 3C 58, low-energy X-rays are colored red, medium-energy X-rays are green, and the high-energy band of X-rays is shown in blue. The X-ray data have been combined with an optical image in yellow from the Digitized Sky Survey. The Chandra data show that the rapidly rotating neutron star (also known as a “pulsar”) at the center is surrounded by a torus of X-ray emission and a jet that extends for several light-years. The optical data shows stars in the field.
      The team in this new study analyzed previously released data from neutron stars to determine the so-called equation of state. This refers to the basic properties of the neutron stars including the pressures and temperatures in different parts of their interiors.
      The authors used machine learning, a type of artificial intelligence, to compare the data to different equations of state. Their results imply that a significant fraction of the equations of state — the ones that do not include the capability for rapid cooling at higher masses — can be ruled out.
      The researchers capitalized on some neutron stars in the study being located in supernova remnants, including 3C 58. Since astronomers have age estimates of the supernova remnants, they also have the ages of the neutron stars that were created during the explosions that created both the remnants and the neutron stars. The astronomers found that the neutron star in 3C 58 and two others were much cooler than the rest of the neutron stars in the study.
      The team thinks that part of the explanation for the rapid cooling is that these neutron stars are more massive than most of the rest. Because more massive neutron stars have more particles, special processes that cause neutron stars to cool more rapidly might be triggered.
      One possibility for what is inside these neutron stars is a type of radioactive decay near their centers where neutrinos — low mass particles that easily travel through matter — carry away much of the energy and heat, causing rapid cooling.
      Another possibility is that there are types of exotic matter found in the centers of these more rapidly cooling neutron stars.
      The Nature Astronomy paper describing these results is available here. The authors of the paper are Alessio Marino (Institute of Space Sciences (ICE) in Barcelona, Spain), Clara Dehman (ICE), Konstantinos Kovlakas (ICE), Nanda Rea (ICE), J. A. Pons (University of Alicante in Spain), and Daniele Viganò (ICE).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description
      This is an image of the leftovers from an exploded star called 3C 58, shown in X-ray and optical light. At the center of the remnant is a rapidly spinning neutron star, called a pulsar, that presents itself as a bright white object that’s somewhat elongated in shape.
      Loops and swirls of material, in shades of blue and purple, extend outward from the neutron star in many directions, resembling the shape of an octopus and its arms.
      Surrounding the octopus-like structure is a cloud of material in shades of red that is wider horizontally than it is vertically. A ribbon of purple material extends to the left edge of the red cloud, curling upward at its conclusion. Another purple ribbon extends to the right edge of the red cloud, though it is less defined than the one on the other side. Stars of many shapes and sizes dot the entire image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      3 min read
      Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo
      June 18, 2024
      At NASA we always say that exploration enables science, and science enables exploration. During a recent, quick trip to Tokyo, Japan with our Associate Administrator for the Exploration Systems Development Mission Directorate (ESDMD), Cathy Koerner, I had an opportunity to share this message with our partners at the Japanese Aerospace Exploration Agency (JAXA).
      We explore for several reasons but primarily to benefit humanity. How exactly does exploration benefit humanity? By accepting audacious challenges like retuning to the Moon and venturing on to Mars, we inspire and motivate current and future generations of scientists, engineers, problem solvers, and communicators to contribute to our mission and other national priorities. By conducting scientific investigations in deep space, on the Moon, and on Mars, we enhance our understanding of the universe and our place in it. And finally, what we achieve when we explore, how it’s accomplished, and who participates benefits international partnerships and global cooperation that are essential for enhancing the quality of life for all.
      NASA Associate Administrator for the Science Mission Directorate, Dr. Nicky Fox, and Associate Administrator for the Exploration systems Development Mission Directorate, Cathy Koerner, meet with the Japanese Aerospace Exploration Agency (JAXA) in Tokyo, Japan on June 11, 2024. Credits: NASA In addition to bi-lateral meetings with our JAXA partners, Cathy and I co-presented at the International Space Exploration Symposium where I shared how every NASA Science division has a stake in Artemis. Cathy provided updates on the Orion spacecraft, SLS rocket, Gateway, human landing systems, and advanced spacesuits, and I talked about all of the incredible science we will conduct along the way. The Artemis campaign is a series of increasingly complex missions that provide ever-growing capabilities for scientific exploration of the Moon. From geology to solar, biological, and fundamental physics phenomena, exploration teaches about the earliest solar system environment: whether and how the bombardments of nascent worlds influenced the emergence of life, how the Earth and Moon formed and evolved, and how volatiles (like water) and other potential resources were distributed and transported throughout the solar system.
      Together with our partners like JAXA, NASA is working towards establishing infrastructure for long-term exploration in lunar orbit and on the surface. For example, on Artemis III, JAXA will provide the Lunar Dielectric Analyzer instrument, which once installed near the lunar South Pole, will help collect valuable scientific data about the lunar environment, it’s interior, and how to sustain a long-duration human presence on the Moon. In April, the U.S. and Japan were proud to make a historic announcement for cooperation on the Moon. Japan will design, develop, and operate a pressurized rover for crewed and uncrewed exploration on the Moon. NASA will launch and deliver the rover, and provide two opportunities for Japanese astronauts to travel to the lunar surface. This historic agreement was highlighted by President Biden and Prime Minister Kishida and is an example of the strong relationship between the United States and Japan. The enclosed and pressurized rover will be able to accommodate two astronauts on the lunar surface for 30 days, and will have a lifespan of about 10 years, enabling it to be used for multiple missions. It will enable longer-duration expeditions, so that astronauts can conduct more moonwalks and perform more science in geographically diverse areas near the lunar South Pole.
      Artemis is different than anything humanity has ever done before. The Artemis campaign will bring the world along for this historic journey, forever changing humanity’s perspective of our place in the universe. This is the start of a lunar ecosystem, where we’ll do more science than we can dream of, together.
      Explore More
      3 min read NASA’s Hubble Restarts Science in New Pointing Mode


      Article


      4 days ago
      2 min read Hubble Observes a Cosmic Fossil


      Article


      4 days ago
      5 min read Associate Administrator for the Science Mission Directorate Visits Partners in Spain, United Kingdom, Greece, and France


      Article


      1 week ago
      View the full article
  • Check out these Videos

×
×
  • Create New...