Jump to content

Reaching New Frontiers in Science Supported by Public Participation


Recommended Posts

  • Publishers
Posted

8 min read

Reaching New Frontiers in Science Supported by Public Participation

Image representing a round star colorized with bands of purple and red against a black background with white stars
A brown dwarf roaming the Milky Way galaxy. Image by citizen scientist/artist William Pendrill.
Credit: William Pendrill

NASA’s Science Mission Directorate seeks knowledge and answers to profound questions that impact all people. Through competitions, challenges, crowdsourcing, and citizen science activities, NASA collaborates with the public to make scientific discoveries that help us better understand our planet and the space beyond. Multiple NASA science projects were supported through public participation in Fiscal Years 2021 and 2022, spanning pursuits in astrophysics, Earth science, heliophysics,1 and more.

Astrophysics

NASA challenges in astrophysics seek to uncover new information about the origin, structure, evolution, and future of the universe, as well as other worlds outside our solar system.

Seeking potential planets in the backyard of our solar system, NASA invited the public to examine data from the Wide-field Infrared Survey Explorer (WISE) mission to discern moving celestial bodies. Human eyes are needed for the task because anomalies in the images often fool image processing technologies. The WISE mission continues to collect data, and the Backyard Worlds: Planet 9 citizen science project is still ongoing. But the project has discovered so far more than 3500 brown dwarfs (balls of gas too small to be considered stars), and one notable citizen scientist himself found 34 ultracool brown dwarfs with companions, now published in The Astronomical Journal.

To understand stars better, a citizen science project called Disk Detective 2.0 was launched in 2020 to evaluate disks, or belts, of material around stars. The original 2014 project resulted in the discovery of the longest-lived disks that form planets—dubbed “Peter Pan” disks—as well as the discovery of the youngest nearby disk around a brown dwarf. The relaunch offered a new batch of 150,000 stars in infrared wavelengths from NASA’s WISE mission and other data. As of May 2023, more than 12,000 volunteers had contributed to the project and 14 of those co-authored scientific papers based on their findings.

The Hybrid Observatory for Earth-like Exoplanets (HOEE) is a concept for a mission that would combine a ground-based telescope with a space-based starshade to enable better views of exoplanets from Earth.  
The Hybrid Observatory for Earth-like Exoplanets (HOEE) is a concept for a mission that would combine a ground-based telescope with a space-based starshade to enable better views of exoplanets from Earth.  
As part of early-stage study of this concept, NASA invited the public to develop 3D computer models of a lightweight starshade. Requirements for the starshade design included compact packaging, successful deployment in orbit, and a low-mass structure capable of maintaining its shape and alignment using as little spacecraft fuel as possible. The Ultralight Starshade Structural Design Challenge received 60 entries, and the top five shared a $7,000 prize. First place combined inflatable tubes for compression structures and cables for tension.  

Artist rendering of a gold starsahde fully deployed in space.
The Ultralight Starshade Structural Design Challenge asked participants to develop a lightweight starshade structure that could be used as part of the Hybrid Observatory for Earth-like Exoplanets (HOEE) concept

Earth Science

One goal of NASA’s Earth science pursuits is to map the connections between Earth’s vital processes and the climate effects of natural and human-caused changes. Multiple competitions are aiding our understanding of these interconnected systems.

A worldwide program called Global Learning and Observation to Benefit the Environment (GLOBE) has brought educators and students together since 1995, promoting science and learning about the environment. As one of the partner organizations for the program, NASA sponsored the NASA GLOBE Trees Challenge 2022: Trees in a Changing Climate to gather tree height observations. The data collected is compared with space-based observation systems to track tree height and growth rate as an indicator of ecosystem health. Volunteers from around the world have amassed more than 4,700 tree-height observations from over 1,500 locations in 50 countries.

A similar data-gathering effort—the Cooperative Open Online Landslide Repository (COOLR)—utilizes a web-based platform developed by NASA to share reports of landslides. The repository’s data is validating a model in development at NASA’s Goddard Space Flight Center in Greenbelt Maryland, the Landslide Hazard Assessment for Situational Awareness (LHASA), to map areas of potential landslide hazard in real-time. LHASA incorporates landslide inventories from people around the world in a machine-learning framework to estimate the relative probability of landslide occurrence.

To develop more accurate air quality data products from NASA satellite missions, a public competition called NASA Airathon: Predict Air Quality2 asked participants to develop algorithms for estimating daily levels of surface-level air pollutants on Earth. Using NASA satellite data, model outputs, and ground measurements, the public estimated daily levels of particulate matter (PM) and nitrogen dioxide (NO2) across urban areas in the U.S., India, and Taiwan—all of which have readily available satellite data. The contest generated more than 1,200 submissions from over 1,000 participants and awarded $25,000 in prizes.

A coral reef in American Samoa, one of the locations where researchers from the Laboratory for Advanced Sensing went on deployment to collect data using fluid-lensing instruments.
The ocean: it’s Earth’s largest ecosystem and the habitat for coral – one of the planet’s most unique and oldest life forms.

While the concept for an iPad game called NeMO-Net could be applied to the search for life across the universe, the current application is assessing the health of coral reefs. Players help NASA classify coral reefs by painting 3D and 2D images of coral captured using the NASA FluidCam instrument, the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion. Data from the painted images feeds into NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. With 43,000 unique downloads of the game, there have been 71,000 classifications, of which 56,400 have been reviewed and confirmed by NASA.

Planetary Science

NASA’s spacecraft, which arrived at Jupiter in 2016, continues to explore the planet and its satellites with a suite of scientific instruments and a camera called JunoCam. The camera takes visible frequency images of Jupiter’s polar regions and its moons.  Via the project website, citizen scientists create images from the raw JunoCam data and post their creations on the Juno website and social media platforms. Early during the prime mission, the project engaged with the public in an online voting campaign to plan image-taking during orbital passes around Jupiter (“perijoves”), but the effort was abandoned after the transition to the 53 day–orbit mission due to unfavorable evolution of the approach geometry.

Ideally, when a space rover lands on Mars, it will know where it is safe to drive, land, sleep, and hibernate—without any guidance from a human operator. An early step in developing this capability, AI4Mars, invited the public to label images of Mars terrain taken by the Curiosity rover. The goal is to train a machine learning algorithm to improve the rover’s ability to identify and avoid hazardous terrain, which is essential for autonomous exploration. Over 16,000 volunteers completed more than 632,000 classifications, and a model developed using the data has a total accuracy of 91%.

A self-portrait of NASA's Curiosity rover taken on Sol 2082 (June 15, 2018). A Martian dust storm has reduced sunlight and visibility at the rover's location in Gale Crater.
A self-portrait of NASA’s Curiosity rover taken on Sol 2082 (June 15, 2018). A Martian dust storm has reduced sunlight and visibility at the rover’s location in Gale Crater. Self-portraits are created using images taken by Curiosity’s Mars Hands Lens Imager (MAHLI). https://photojournal.jpl.nasa.gov/catalog/PIA22486

Another ideal capability for a Mars rover is independent analysis of data to avoid the tedious process of data transmission from Mars to Earth and back. In the Mars Spectrometry: Detect Evidence for Past Habitability challenge, NASA engaged the public to build a model to automatically analyze mass spectrometry data from rock and soil samples. Out of 656 entries, a software engineer from Brisbane, Australia, won $15,000 for first place. The second-place winner from the United States received $7,500, and the third-place winner from India won $5,000.

Biological and Physical Sciences

One of the aims of biological science research at NASA is to understand how biological systems acclimate to spaceflight environments. 

A unique classroom-based citizen science program called Growing Beyond Earth advances NASA’s research on growing plants in space. In its seventh year, the NASA program provides all the materials needed for the experiments. In total, more than 40,000 participating students and teachers have contributed hundreds of thousands of data points and tested 180 varieties of edible plants. As a result of their efforts, four types of vegetables were grown by NASA off-Earth, and two varieties have been successfully grown on the International Space Station.

Heliophysics

NASA studies the Sun and its effects on Earth and the solar system—or heliophysics—to increase understanding of how the universe works, how to protect technology and astronauts in space, and how stars contribute to the habitability of planets throughout the universe.

SOHO captured this image of a gigantic coronal hole hovering over the sun’s north pole on July 18, 2013.
SOHO captured this image of a gigantic coronal hole hovering over the sun’s north pole on July 18, 2013.

To enable better discovery and tracking of sungrazing comets—the large but faint objects made of dust and ice in close orbit of the Sun—NASA held the NASA SOHO Comet Search. Over $55,000 in prizes was awarded to solutions to reduce background noise in data recorded by the Large Angle and Spectrometric Coronagraph (LASCO), one of the instruments on the Solar and Heliospheric Observatory (SOHO) spacecraft. Hundreds of participants from around the world devised artificial intelligence and machine learning approaches, which led to the discovery of two previously unidentified comets, including a difficult-to-detect non-group comet.

The preliminary results we’re already seeing come out of this challenge highlight the value of the open science movement.

Katie Baynes

Katie Baynes

NASA's Deputy Chief Science Data Officer

Space Apps 2021

In its tenth year, NASA’s 2021 International Space Apps Challenge took place in 320 locations across 162 countries or territories. The hackathon for coders, scientists, designers, storytellers, makers, technologists, and innovators around the world offered 28 different topics to solve using open data from NASA and others. This year’s winners included an app for homeowners to simplify data from NASA’s Prediction of Worldwide Renewable Energy Resources (POWER) web services portal to help make solar panel purchasing decisions and encourage solar energy use. Another winning app detects, quantifies, follows, and projects the movement of plastic debris in the ocean with high accuracy.

Endnotes

[1] https://science.nasa.gov/about-us/smd-vision

[2] https://drivendata.co/blog/nasa-airathon-winners

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:04:13 Daniel Neuenschwander, ESA head of Space and Robotic Exploration, explains that Ignis mission will include an ambitious technological and scientific programme with several experiments led by ESA and proposed by the Polish space industry.
      On 26 June 2025, ESA project astronaut Sławosz Uznański-Wiśniewski from Poland and his crewmates arrived to the International Space Station on the Axiom-4 mission (Ax-4).
      The Polish project astronaut is the second of a new generation of European astronauts to fly on a commercial human spaceflight opportunity with Axiom Space.
      View the full article
    • By European Space Agency
      At the Living Planet Symposium, attendees have been hearing how ESA’s Next Generation Gravity Mission could provide the first opportunity to directly track a vital ocean circulation system that warms our planet – but is now weakening, risking a possible collapse with far-reaching consequences.
      View the full article
    • By NASA
      6 Min Read NASA’s Chandra Shares a New View of Our Galactic Neighbor
      The Andromeda galaxy, also known as Messier 31 (M31), is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
      The galaxy M31 has played an important role in many aspects of astrophysics, but particularly in the discovery of dark matter. In the 1960s, astronomer Vera Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.” Its nature remains one of the biggest open questions in astrophysics today, one which NASA’s upcoming Nancy Grace Roman Space Telescope is designed to help answer.
      X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major This new composite image contains data of M31 taken by some of the world’s most powerful telescopes in different kinds of light. This image includes X-rays from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton (represented in red, green, and blue); ultraviolet data from NASA’s retired GALEX (blue); optical data from astrophotographers using ground based telescopes (Jakob Sahner and Tarun Kottary); infrared data from NASA’s retired Spitzer Space Telescope, the Infrared Astronomy Satellite, COBE, Planck, and Herschel (red, orange, and purple); and radio data from the Westerbork Synthesis Radio Telescope (red-orange).
      The Andromeda Galaxy (M31) in Different Types of Light.X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major Each type of light reveals new information about this close galactic relative to the Milky Way. For example, Chandra’s X-rays reveal the high-energy radiation around the supermassive black hole at the center of M31 as well as many other smaller compact and dense objects strewn across the galaxy. A recent paper about Chandra observations of M31 discusses the amount of X-rays produced by the supermassive black hole in the center of the galaxy over the last 15 years. One flare was observed in 2013, which appears to represent an amplification of the typical X-rays seen from the black hole.
      These multi-wavelength datasets are also being released as a sonification, which includes the same wavelengths of data in the new composite. In the sonification, the layer from each telescope has been separated out and rotated so that they stack on top of each other horizontally, beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes, from lower-energy radio waves up through the high energy of X-rays. Meanwhile, the brightness of each source controls volume, and the vertical location dictates the pitch.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      In this sonification of M31, the layers from each telescope has been separated out and rotated so that they stack on top of each other horizontally beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes ranging from lower-energy radio waves up through the high-energy of X-rays. Meanwhile, the brightness of each source controls volume and the vertical location dictates the pitch.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida This new image of M31 is released in tribute to the groundbreaking legacy of Dr. Vera Rubin, whose observations transformed our understanding of the universe. Rubin’s meticulous measurements of Andromeda’s rotation curve provided some of the earliest and most convincing evidence that galaxies are embedded in massive halos of invisible material — what we now call dark matter. Her work challenged long-held assumptions and catalyzed a new era of research into the composition and dynamics of the cosmos. In recognition of her profound scientific contributions, the United States Mint has recently released a quarter in 2025 featuring Rubin as part of its American Women Quarters Program — making her the first astronomer honored in the series.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features several images and a sonification video examining the Andromeda galaxy, our closest spiral galaxy neighbor. This collection helps astronomers understand the evolution of the Milky Way, our own spiral galaxy, and provides a fascinating insight into astronomical data gathering and presentation.
      Like all spiral galaxies viewed at this distance and angle, Andromeda appears relatively flat. Its spiraling arms circle around a bright core, creating a disk shape, like a large dinner plate. In most of the images in this collection, Andromeda’s flat surface is tilted to face our upper left.
      This collection features data from some of the world’s most powerful telescopes, each capturing light in a different spectrum. In each single-spectrum image, Andromeda has a similar shape and orientation, but the colors and details are dramatically different.
      In radio waves, the spiraling arms appear red and orange, like a burning, loosely coiled rope. The center appears black, with no core discernible. In infrared light, the outer arms are similarly fiery. Here, a white spiraling ring encircles a blue center with a small golden core. The optical image is hazy and grey, with spiraling arms like faded smoke rings. Here, the blackness of space is dotted with specks of light, and a small bright dot glows at the core of the galaxy. In ultraviolet light the spiraling arms are icy blue and white, with a hazy white ball at the core. No spiral arms are present in the X-ray image, making the bright golden core and nearby stars clear and easy to study.
      In this release, the single-spectrum images are presented side by side for easy comparison. They are also combined into a composite image. In the composite, Andromeda’s spiraling arms are the color of red wine near the outer edges, and lavender near the center. The core is large and bright, surrounded by a cluster of bright blue and green specks. Other small flecks in a variety of colors dot the galaxy, and the blackness of space surrounding it.
      This release also features a thirty second video, which sonifies the collected data. In the video, the single-spectrum images are stacked vertically, one atop the other. As the video plays, an activation line sweeps across the stacked images from left to right. Musical notes ring out when the line encounters light. The lower the wavelength energy, the lower the pitches of the notes. The brighter the source, the louder the volume.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 EditorLee MohonContactLane Figueroa Related Terms
      Andromeda Galaxy Chandra X-Ray Observatory Galaxies Marshall Astrophysics Marshall Space Flight Center The Universe Explore More
      6 min read NICER Status Updates
      Article 1 day ago 2 min read Hubble Studies Small but Mighty Galaxy
      This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in…
      Article 5 days ago 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field
      For 540 million years, the ebb and flow in the strength of Earth’s magnetic field…
      Article 1 week ago View the full article
    • By NASA
      Editor’s note: This interview was conducted in October 2023. 
      As the International Space Station approaches 25 years of continuous human presence on Nov. 2, 2025, it is a meaningful moment to recognize those who have been there since the beginning—sharing the remarkable achievements of human spaceflight with the world.   
      If you have ever witnessed the live coverage of a NASA spacewalk or launch, then you know the captivating voice of celestial storyteller Rob Navias. Navias effortlessly blends expertise, enthusiasm, and profound insight into every mission. 
      Rob Navias on console in the Mission Control Center covering an Extravehicular Activity aboard the International Space Station. NASA/Bill Stafford  I relay the facts and data with history in mind. You need to maintain a sense of history if you're going to be able to tell the contemporary story properly.
      Rob Navias
      Public Affairs Officer and Mission Commentator  
      Navias works within the Office of Public Affairs on mission operations and television in NASA Johnson Space Center’s Office of Communications, leading public affairs activities involving launches and landings of U.S. astronauts and international partner crew members. He is iconically known as the voice of NASA.   
      He has been a part of some of the most impactful moments in space exploration history, communicating the facts in real time with unmatched clarity. He covered every shuttle mission from the maiden launch of Columbia in April 1981 to Atlantis’ final voyage in July 2011. Navias is known for connecting others accurately and honestly to key moments in time.  
      Navias’ extraordinary contributions to space communications garnered him the 2017 Space Communicator Award from the Rotary National Award for Space Achievement Foundation. This prestigious accolade is presented to individuals or teams who have made remarkable contributions to public understanding and appreciation of space exploration. Navias’ unwavering dedication to NASA was recognized with the 2023 Length of Federal Service Award, commemorating his 30-year commitment to the agency.    
      His legacy continued on screen in Cosmic Dawn, the NASA documentary exploring the James Webb Space Telescope’s incredible journey. Featured for his role as the launch commentator during Webb’s Christmas Day 2021 liftoff, Navias brought historical context and lived experience to one of NASA’s most ambitious missions.
      As long as we can maintain a shared vision and curiosity, all nations can go a long way up to the universe.
      Rob Navias
      Public Affairs Officer and Mission Commentator  
      He began his broadcast career as a correspondent for networks covering the Space Shuttle Program. Before joining NASA in 1993, Navias had a 25-year career in broadcast journalism where he reported the voyage of Pioneer 11, a robotic space probe that studied the asteroid belt and the rings of Saturn, as well as the test flights for the Space Shuttle Enterprise at Edwards Air Force Base in California and the Voyager missions from NASA’s Jet Propulsion Laboratory in Southern California. 
      Navias also covered the Apollo-Soyuz Test Project as a broadcast journalist. That first international human spaceflight showed the world there was a way for nations to work together peacefully for a common goal, Navias stated.  
      “Once the commitment was made to fund the construction of an international space station, it broadened the agency’s scope to work multiple programs that could be a stepping stone beyond low Earth orbit,” Navias said.     
      Rob Navias (left), accompanied by Phil Engelauf and John Shannon, during an STS-114 Flight Director press briefing.NASA I think the greatest legacy of the International Space Station will ultimately be the diplomatic oasis it has provided in orbit for exploration and scientific research.
      ROB Navias
      Public Affairs Officer and Mission Commentator  
      Navias explained that during his time at NASA, he has learned a lot about himself. “The day you stop absorbing information, the day that you grow tired of learning new things is the day you need to walk away,” he said. “The challenge of spaceflight keeps me here at NASA.”
      Navias underscored the importance of nurturing and retaining the agency’s brilliant workforce who have shaped the pioneering mindset of human space exploration. He believes blending talent, resources, and industry expertise is the key to returning to the Moon and going to Mars. This collaborative mindset has not only resulted in establishing a laboratory in low Earth orbit but also paved the way for future missions.    
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In addition to drilling rock core samples, the science team has been grinding its way into rocks to make sense of the scientific evidence hiding just below the surface.
      NASA’s Perseverance rover uses an abrading bit to get below the surface of a rocky out-crop nicknamed “Kenmore” on June 10. The eight images that make up this video were taken approximately one minute apart by one of the rover’s front hazard-avoidance cameras. NASA/JPL-Caltech On June 3, NASA’s Perseverance Mars rover ground down a portion of a rock surface, blew away the resulting debris, and then went to work studying its pristine interior with a suite of instruments designed to determine its mineralogic makeup and geologic origin. “Kenmore,” as nicknamed by the rover science team, is the 30th Martian rock that Perseverance has subjected to such in-depth scrutiny, beginning with drilling a two-inch-wide (5-centimeter-wide) abrasion patch.  
      “Kenmore was a weird, uncooperative rock,” said Perseverance’s deputy project scientist, Ken Farley from Caltech in Pasadena, California. “Visually, it looked fine — the sort of rock we could get a good abrasion on and perhaps, if the science was right, perform a sample collection. But during abrasion, it vibrated all over the place and small chunks broke off. Fortunately, we managed to get just far enough below the surface to move forward with an analysis.”
      The science team wants to get below the weathered, dusty surface of Mars rocks to see important details about a rock’s composition and history. Grinding away an abrasion patch also creates a flat surface that enables Perseverance’s science instruments to get up close and personal with the rock.
      This close-up view of an abrasion showing distinctive “tool marks” created by the Perseverance’s abrading bit was acquired on June 5. The image was taken from approximately 2.76 inches (7 centimeters) away by the rover’s WATSON imager. NASA/JPL-Caltech/MSSS Perseverance’s gold-colored abrading bit takes center stage in this image of the rover’s drill taken by the Mastcam-Z instrument on Aug. 2, 2021, the 160th day of the mission to Mars.NASA/JPL-Caltech/ASU/MSSS Time to Grind
      NASA’s Mars Exploration Rovers, Spirit and Opportunity, each carried a diamond-dust-tipped grinder called the Rock Abrasion Tool (RAT) that spun at 3,000 revolutions per minute as the rover’s robotic arm pushed it deeper into the rock. Two wire brushes then swept the resulting debris, or tailings, out of the way. The agency’s Curiosity rover carries a Dust Removal Tool, whose wire bristles sweep dust from the rock’s surface before the rover drills into the rock. Perseverance, meanwhile, relies on a purpose-built abrading bit, and it clears the tailings with a device that surpasses wire brushes: the gaseous Dust Removal Tool, or gDRT.
      “We use Perseverance’s gDRT to fire a 12-pounds-per-square-inch (about 83 kilopascals) puff of nitrogen at the tailings and dust that cover a freshly abraded rock,” said Kyle Kaplan, a robotic engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Five puffs per abrasion — one to vent the tanks and four to clear the abrasion. And gDRT has a long way to go. Since landing at Jezero Crater over four years ago, we’ve puffed 169 times. There are roughly 800 puffs remaining in the tank.” The gDRT offers a key advantage over a brushing approach: It avoids any terrestrial contaminants that might be on a brush from getting on the Martian rock being studied.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video captures a test of Perseverance’s Gaseous Dust Removal Tool (gDRT) in a vacuum chamber at NASA’s Jet Propulsion Laboratory in August 2020. The tool fires puffs of nitrogen gas at the tailings and dust that cover a rock after it has been abraded by the rover.NASA/JPL-Caltech Having collected data on abraded surfaces more than 30 times, the rover team has in-situ science (studying something in its original place or position) collection pretty much down. After gDRT blows the tailings away, the rover’s WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) imager (which, like gDRT, is at the end of the rover’s arm) swoops in for close-up photos. Then, from its vantage point high on the rover’s mast, SuperCam fires thousands of individual pulses from its laser, each time using a spectrometer to determine the makeup of the plume of microscopic material liberated after every zap. SuperCam also employs a different spectrometer to analyze the visible and infrared light that bounces off the materials in the abraded area.
      “SuperCam made observations in the abrasion patch and of the powdered tailings next to the patch,” said SuperCam team member and “Crater Rim” campaign science lead, Cathy Quantin-Nataf of the University of Lyon in France. “The tailings showed us that this rock contains clay minerals, which contain water as hydroxide molecules bound with iron and magnesium — relatively typical of ancient Mars clay minerals. The abrasion spectra gave us the chemical composition of the rock, showing enhancements in iron and magnesium.”
      Later, the SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) and PIXL (Planetary Instrument for X-ray Lithochemistry) instruments took a crack at Kenmore, too. Along with supporting SuperCam’s discoveries that the rock contained clay, they detected feldspar (the mineral that makes much of the Moon brilliantly bright in sunlight). The PIXL instrument also detected a manganese hydroxide mineral in the abrasion — the first time this type of material has been identified during the mission.  
      With Kenmore data collection complete, the rover headed off to new territories to explore rocks — both cooperative and uncooperative — along the rim of Jezero Crater.
      “One thing you learn early working on Mars rover missions is that not all Mars rocks are created equal,” said Farley. “The data we obtain now from rocks like Kenmore will help future missions so they don’t have to think about weird, uncooperative rocks. Instead, they’ll have a much better idea whether you can easily drive over it, sample it, separate the hydrogen and oxygen contained inside for fuel, or if it would be suitable to use as construction material for a habitat.”
      Long-Haul Roving
      On June 19 (the 1,540th Martian day, or sol, of the mission), Perseverance bested its previous record for distance traveled in a single autonomous drive, trekking 1,348 feet (411 meters). That’s about 210 feet (64 meters) more than its previous record, set on April 3, 2023 (Sol 753). While planners map out the rover’s general routes, Perseverance can cut down driving time between areas of scientific interest by using its self-driving system, AutoNav.
      “Perseverance drove 4½ football fields and could have gone even farther, but that was where the science team wanted us to stop,” said Camden Miller, a rover driver for Perseverance at JPL. “And we absolutely nailed our stop target location. Every day operating on Mars, we learn more on how to get the most out of our rover. And what we learn today future Mars missions won’t have to learn tomorrow.”
      News Media Contact
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov    
      2025-082
      Share
      Details
      Last Updated Jun 25, 2025 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
      5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
      Article 2 days ago 4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 3 weeks ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...