Jump to content

Collaborating with Public Innovators to Accelerate Space Exploration


Recommended Posts

  • Publishers

8 min read

Collaborating with Public Innovators to Accelerate Space Exploration

NASA astronauts Shannon Walker, left, Victor Glover, Mike Hopkins, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, right are seen inside the SpaceX Crew Dragon Resilience spacecraft onboard the SpaceX GO Navigator recovery ship shortly after having landed in the Gulf of Mexico off the coast of Panama City, Florida, Sunday, May 2, 2021.
NASA astronauts Shannon Walker, left, Victor Glover, Mike Hopkins, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, right are seen inside the SpaceX Crew Dragon Resilience spacecraft onboard the SpaceX GO Navigator recovery ship shortly after having landed in the Gulf of Mexico off the coast of Panama City, Florida, Sunday, May 2, 2021. NASA’s SpaceX Crew-1 mission was the first crew rotation flight of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket with astronauts to the International Space Station as part of the agency’s Commercial Crew Program.
NASA/Bill Ingalls

With the successful launch and landing of Artemis I in 2022, NASA set the stage for a new era of space exploration. Together, NASA and its partners will lead humanity to the Moon and prepare for the next giant leap: human exploration of Mars.

To address the multitude of challenges that come with planning for this new era, NASA is calling on individuals and teams from the public to develop new and innovative approaches. Some of the topics addressed through NASA-sponsored contests, challenges, and competitions include waste management and sustainability in space, astronaut health and wellness, and a host of advanced technology needs for long-term space exploration.

Sustainability and Waste Management

A round-trip visit to Mars is estimated to take two to three years. During this adventure, astronauts will need abundant supplies with minimal waste. To be as efficient and self-sufficient as possible, they must recycle, repurpose, or reprocess what they have and make what they need. Thanks to NASA competitions, innovators devised ways to manage ash created from trash in microgravity, reuse materials for growing plants, eject waste from a spacecraft, and recycle orbiting space debris.  

With no landfills in space, NASA is developing a reactor that uses thermal processes to turn trash into water, gas, and ash. To manage the ash produced by the reactor, the agency called on the public and awarded three teams a total of $30,000 as part of the Trash-to-Gas Ash Management Challenge. The first-place winner proposed using ultrasonic waves to automate ash removal from the Orbital Syngas Commodity Augmentation Reactor (OSCAR) system, a test rig designed to make use of trash and human waste generated during long-duration spaceflight.

A researcher wearing safety glasses examines payload hardware in a lab.
Ray Pitts, co-principal investigator for the Orbital Syngas Commodity Augmentation Reactor (OSCAR), performs ground testing at NASA’s Kennedy Space Center in Florida. The tests are in preparation for a scheduled suborbital flight test later this year, facilitated by NASA’s Flight Opportunities program. Begun as an Early Career Initiative project, OSCAR evaluates technology to make use of trash and human waste generated during long-duration spaceflight.

Another way to handle trash in space is to reuse or recycle it. In the Waste to Base Materials Challenge: Sustainable Reprocessing in Space, NASA asked contestants of this competition to submit ideas to convert or repurpose waste into valuable materials like propellant or stock for 3D printing. A winner in the foam packing category proposed a method to recycle packing foam and urine for hydroponics; a winner in the trash category suggested clothing as a growing medium. All teams shared a $24,000 prize.

For the non-recyclable waste made during the journey to and from Mars, NASA sought concepts for a jettison mechanism to eject the material from the spacecraft under the Waste Jettison Mechanism Challenge. If not disposed of, the waste will take up crucial space, pose risks to the spacecraft and crew by creating hazards or contaminants, and decrease fuel efficiency. The agency awarded $30,000 for concepts including a scissor-spring-shot, a secure variable energy launcher, a CO2 trash launcher, and a spring-loaded ejection mechanism.

With more than 17 million pounds of space debris currently in orbit—sections of rockets and non-operational satellites made of aluminum, titanium, steel, plastics, ceramics, and more—the agency is exploring whether recycling the materials is more cost-effective than launching new materials into space. Through the Orbital Alchemy Challenge, NASA awarded $55,000 in prizes for proposals on how to recycle the objects in orbit.

Astronaut Health and Wellness

NASA is making plans to protect astronaut health and performance during long-duration space exploration as well as to develop countermeasures for potential problems during such travel. With goals to establish the first long-term presence on the Moon and send the first astronauts to Mars, NASA requested the public’s help to come up with ways to produce food, preserve the integrity of spacesuits, and monitor an astronaut’s cognitive state.

During extended space missions, astronauts may produce their own safe, nutritious, and appetizing foods. To devise ideas for novel and game-changing food technologies or systems that could feed astronauts during space travel, NASA held the Deep Space Food Challenge, awarding a total of $450,000 to eight winning U.S. teams. Winning technologies included a system and processes for turning air, water, electricity, and yeast into food and a solution that mimics photosynthesis to produce plant- and mushroom-based ingredients.

Two white men with brunette hair, wearing navy blue t-shirts and black pants with sneakers, stand in front of a food system demonstration station comprised of nine incubator cubes with plants/vegetation inside. One of the men stands in front of a black table and, while wearing light blue gloves, spoons alfalfa sprouts from a large bowl into a small sample cup. Also on the table are wooden spoons, more sample cups, and a tray of alfalfa sprouts. Behind the demonstration station are three navy backdrops, which include affiliated logos and graphic demonstrations showing how the food system works.
Deep Space Food Challenge (2023) – Two Challenge finalists prepare samples of their food system to share at the Phase 2 winner’s announcement event in Brooklyn, New York.

NASA needs to detect and reduce spacesuit injury risk, but current software solutions are limited. To develop a new solution, NASA conducted the Spacesuit Detection Challenge1 to create software able to detect one or more spacesuits in various environments, discriminate between a person and a spacesuit, and extract suit postures from obscured images. There were five winning programs to label and identify spacesuit motions from video and photos.

As space missions move farther away from Earth, the responsibility for space operations shifts from mission control on the ground to astronaut crews in flight. To gauge astronauts’ ability to remember, make real-time decisions, and think several seconds ahead, NASA’s Cognitive State Determination System contest2 asked participants to develop a biometric sensor suite using various inputs to predict cognitive state. Thirty teams received awards through this contest.

Managing Payloads, Deliveries, and Storage

Aside from managing a sustainable environment and maintaining astronaut health in space, NASA has a host of additional needs to enable future space exploration. Answering NASA’s calls for assistance through various competitions, the public helped devise a plethora of technologies for autonomous observation, nighttime precision landing, docking station flooring, risk prediction using artificial intelligence, advanced scientific sensors, software to analyze images, and programs for modeling shock.

With $2 million in total prizes, the Autonomous Observation Challenge No. 1 of the NASA TechLeap Challenge sought observation technologies to detect, track, and establish line-of-sight communications with a lander, rover, or other objects on the Moon’s surface. One of the winning technologies autonomously detects, tracks, and logs nascent wildfires and similar phenomena. Another winning design uses visible and infrared cameras to identify and classify plumes in Earth’s atmosphere using an advanced form of machine learning.

Even if the terrain is hazardous and lighting conditions are low, NASA needs to be able to land its spacecraft safely. NASA TechLeap’s Nighttime Precision Landing Challenge No. 1 worth up to $650,000 requested sensing systems to detect hazards from an altitude of 250 meters or higher and with the capability to process the data in real-time to generate a terrain map. One winning system leveraged a light projector to project a grid of reflective points visible to a camera, creating an initial geometry map. It then used light detection and ranging with advanced computer vision, machine learning, robotics, and computing to generate a map of the terrain.

Image of lunar landing equipment
Concept image demonstrating the low-light conditions that will be faced by lunar landers during their missions to explore the Moon.

A long-duration habitat for use on the Moon, Mars, and during deep space exploration must be capable of attaching to other modules such as pressurized rovers or an airlock. A docking system is needed to join these spacecraft elements even when they are not perfectly aligned, and NASA also needs flexible, strong flooring for use in gravity and microgravity environments. The Spacecraft Docking Adapter with a Flexible but Load-Bearing Floor competition3 awarded five winning designs. 

NASA’s Game Changing Development (GCD) program advances space technology ideas that could lead to new approaches for future space missions. Wanting to identify project risks before they become actual issues, GCD held the Risky Space Business: NASA Artificial Intelligence Risk Prediction Challenge to design a project management tool that can extract past project risk information and use artificial intelligence and machine learning to predict risks on future projects. Three winners received a total of $50,000.

NASA’s Entrepreneurs Challenge seeks fresh ideas in technology that could lead to revolutionary science discoveries to explore and understand the solar system and beyond. In 2021, the program’s focus areas included small satellite technologies that can autonomously recognize scientific phenomena in space and respond as needed; sensors to detect and observe at dramatically reduced size, weight, power, and cost; and instruments to detect biomarkers. After a NASA judging panel selected 10 companies to receive a $10,000 award each, the winners refined their concepts, developed white papers, and gave presentations. The same panel selected seven companies to receive an additional $80,000 in prizes.

On a mission to improve understanding of the Moon over many decades—including changes to its surface—NASA held the Image Co-registration Code Challenge4 to devise the initial versions of the Lunar Mission Co-registration Tool. This tool will process lunar images captured under varying lighting conditions or with different spacecraft or camera characteristics and automatically co-register, color balance, and remove distortions. The images are then available to experts for comparison and examination to identify differences over the decades.

To reduce the risk of critical spacecraft component failure due to shock, NASA models the propagation of shock as closely as possible. While the agency created standards in the early days of spaceflight based on extensive testing across structures, today’s mathematical methods and high-performance computing tools can provide better models. The Aftershock: NASA Shock Propagation Prediction Challenge awarded four contestants a shared prize of $50,000, including a deep learning model that predicts shock response spectrum values connected to different frequencies and learns different connections and contexts between the input data points.


[1] https://www.topcoder.com/blog/nasa-spacesuit-detection-challenge/

[2] https://www.topcoder.com/community/nasa/cognitive-state

[3] https://grabcad.com/challenges/nasa-challenge-spacecraft-docking-adapter-with-a-flexible-but-load-bearing-floor

[4] https://www.topcoder.com/challenges/76c6fb0e-0de3-4d60-b472-37e238e14fc4



Last Updated
Nov 07, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      We Are In A Space Race With China
    • By NASA
      5 Min Read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Astronauts Eileen M. Collins, mission commander and Jeffrey S. Ashby, pilot, peruse checklists on Columbia's middeck during the STS-93 mission. Credits: NASA At the end of February 1998, Johnson Space Center Deputy Director James D. Wetherbee called Astronaut Eileen Collins to his office in Building 1. He told her she had been assigned to command STS-93 and went with her to speak with Center Director George W.S. Abbey who informed her that she would be going to the White House the following week.
      Selecting a female commander to fly in space was a monumental decision, something the space agency recognized when they alerted the president of the United States. First Lady Hillary Clinton wanted to publicly announce the flight to the American people along with her husband President William J. Clinton and NASA Administrator Daniel S. Goldin.
      President William Jefferson Clinton and First Lady Hillary Rodham Clinton with Eileen Collins in the Oval Office.Sharon Farmer and White House Photograph Office At that event, on March 5, 1998, the First Lady noted what a change it would be to have a female in the commander’s seat. Referencing Neil A. Armstrong’s first words on the Moon, Clinton proclaimed, “Collins will take one big step forward for women and one giant leap for humanity.” Collins, a military test pilot and shuttle astronaut, was about to break one of the last remaining barriers for women at NASA by being assigned a position previously filled by men only. Clinton went on to reflect on her own experience with the space agency when she explained how in 1962, at the age of 14, she had written to NASA and asked about the qualifications to become an astronaut. NASA responded that women were not being considered to fly space missions. “Well, times have certainly changed,” she said wryly.
      Eileen Collins’ assignment as the first female shuttle commander was front page news in the March 13, 1998 issue of Johnson Space Center’s Space News Roundup.NASA The same year Hillary Clinton inquired about the astronaut corps, a special subcommittee of the U.S. House of Representatives Committee on Science and Astronautics held hearings on the issue of sexual discrimination in the selection of astronauts. Astronaut John H. Glenn, who had flown that February in 1962, justified women’s exclusion from the corps. “I think this gets back to the way our social order is organized really. It is just a fact. The men go off and fight the wars and fly the airplanes and come back and help design and build and test them. The fact that women are not in this field is a fact of our social order. It may be undesirable.” Attitudes about women’s place in society, not just at NASA, were stubbornly hard to break. It would be 16 years before the agency selected its first class of astronauts that included women.
      Astronaut Eileen M. Collins looks over a checklist at the commander’s station on the forward flight deck of the space shuttle Columbia on July 23, 1999, the first day of the mission.  The most important event of this day was the deployment of the Chandra X-Ray Observatory.NASA By 1998, views about women’s roles had changed substantially, as demonstrated by the naming of the first female shuttle commander. The agency even commissioned a song for the occasion: “Beyond the Sky,” by singer-songwriter Judy Collins. NASA dedicated the historic mission’s launch to America’s female aviation pioneers from the Ninety-Nines—an international organization of women pilots—to the Women Airforce Service Pilots (WASPs), women who ferried aircraft for the military during World War II. Collins also extended an invitation to the women who had participated in Randy Lovelace’s Woman in Space Program, where women went through the same medical and psychological tests as the Mercury 7 astronauts; the press commonly refers to these women as the Mercury 13. (Commander Collins had thanked both the WASPs and the Mercury 13 for paving the way and inspiring her career in aviation and spaceflight in her White House speech.)
      In a way, it's like my dream come true.
      Betty Skelton Frankman
      Pioneering Woman Aviator
      In a group interview with several of the WASPs in Florida, just before launch, Mary Anna “Marty” Martin Wyall explained why they came. “Eileen Collins was one of those women that has always looked at us as being her mentors, and we just think she’s great. That’s why we want to come see her blast off.” Betty Skelton Frankman expressed just how proud she was of Collins, and how NASA’s first female commander would be fulfilling her dream to fly in space. “In a way,” she said, “it’s like my dream come true.” In the ‘60s it was not possible for a woman to fly in space because none met the requirements as laid out by NASA. But by the end of the twentieth century, women had been in the Astronaut Office for 20 years, and opportunities for women had grown as women were selected as pilot astronauts. NASA named its second and only other female space shuttle commander, Pamela A. Melroy, to STS-120, and Peggy A. Whitson went on to command the International Space Station. Melroy and Whitson shook hands in space, when their missions coincided, for another historic first—two women commanding space missions at the same time.
      Twenty-five years ago, Eileen Collins’ command broke down barriers in human spaceflight. As the First Lady predicted, her selection led to other opportunities for women astronauts. More women continue to command spaceflight missions, including Expedition 65 Commander Shannon Walker and Expedition 68 Commander Samantha Cristoforetti. More importantly, Collins became a role model for young people interested in aviation, engineering, math, science, and technology. Her career demonstrated that there were no limits if you worked hard and pursued your passion.
      Learn More About Eileen Collins Share
      Last Updated Jul 22, 2024 Related Terms
      Eileen M. Collins Former Astronauts NASA History STS-93 Women at NASA Women's History Month Explore More
      5 min read Sally Ride Remembered as an Inspiration to Others
      Article 1 year ago 6 min read The Class of 1978 and the FLATs
      Article 11 years ago 6 min read Lovelace’s Woman in Space Program
      Article 20 years ago Keep Exploring Discover More Topics From NASA
      NASA History
      Women at NASA
      Space Shuttle
      Former Astronauts
      View the full article
    • By Space Force
      The SRB program serves as a retention tool, targeting experienced enlisted personnel in critical career fields, particularly those with lower manning or retention rates.

      View the full article
    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson, and Aleksandr Gorbunov.Credit: NASA NASA will host a pair of news conferences Friday, July 26, from the agency’s Johnson Space Center in Houston to highlight upcoming crew rotation missions to the International Space Station.
      NASA will host a mission overview news conference at 12 p.m. EDT and provide coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. The news conference will cover NASA’s SpaceX Crew-9 mission to the microgravity laboratory and Expeditions 71 and 72.
      NASA also will host a crew news conference at 2 p.m., and provide coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website, followed by individual astronaut interviews at 3 p.m. Learn how to stream NASA TV through a variety of platforms, including social media.
      The Crew-9 mission, targeted to launch in mid-August, will carry NASA astronauts Zena Cardman, Nick Hague, Stephanie Wilson, and cosmonaut Alexsandr Gorbunov of Roscosmos to the orbiting laboratory. A SpaceX Falcon 9 rocket will launch the crew aboard a Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on the company’s ninth crew rotation mission for NASA.
      These events will be the final media opportunity to speak to the Crew-9 astronauts before they travel to NASA Kennedy for launch. United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m., Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.
      U.S. or international media seeking remote interviews must submit requests to the NASA Johnson newsroom by 5 p.m., Thursday, July 25. A copy of NASA’s media accreditation policy is online.
      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):
      12 p.m.: Mission Overview News. Conference
      Steve Stich, manager, Commercial Crew Program, NASA Johnson Dana Weigel, manager, International Space Station Program, NASA Johnson Sarah Walker, director, Dragon Mission Management, SpaceX Sergei Krikalev, executive director of Human Space Flight Programs, Roscosmos 2 p.m.: Crew News Conference
      Zena Cardman, spacecraft commander, NASA Nick Hague, pilot, NASA Stephanie Wilson, mission specialist, NASA Alexsandr Gorbunov, mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-9 members available for a limited number of interviews The Crew-9 mission will be the first spaceflight for Cardman, who was selected as a NASA astronaut in 2017. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was a doctoral candidate in geosciences. Cardman’s research focused on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and development for lunar surface exploration. Follow @zenanaut on X and @zenanaut on Instagram.
      With 203 days logged in space, this will be Hague’s third launch and second mission to the orbiting laboratory. During his first launch in 2018, Hague and his crewmate, Roscosmos cosmonaut Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight launch abort and safe landing for their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft. As an active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Department of Defense in Washington, where he served as the USSF director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment. Follow @astrohague on X and @astrohauge on Instagram.
      A veteran of three spaceflights aboard space shuttle Discovery, Wilson has spent 42 days in space. During her first mission, STS-121, in July 2006, she and her crewmates spent 13 days in orbit. Wilson served as the robotic arm operator for spacecraft inspection, the installation of the “Leonardo” Multi-Purpose Logistics Module, and spacewalk support. In October 2007, Wilson and her STS-120 crewmates delivered the Harmony module to the station and relocated a solar array. In April 2010, Wilson and her STS-131 crewmates completed another resupply mission to the orbiting complex, delivering a new ammonia tank for the station cooling system, new crew sleeping quarters, a window observation facility, and a freezer for experiments. During nearly 30 years with NASA, Wilson served as the integration branch chief for NASA’s Astronaut Office, focusing on International Space Station systems and payload operations. She also completed a nine-month detail as the acting chief of NASA’s Program and Project Integration Office at the agency’s Glenn Research Center in Cleveland. Follow @astro_stephanie on X.
      This will be Gorbunov’s first trip to space and the station. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before being selected as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corporation Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome.
      Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      Last Updated Jul 19, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers NASA invites a global community of innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space Apps Challenge, the largest annual global hackathon. The annual event,  held this year on October 5-6, fosters innovation through international collaboration by providing an opportunity for participants to utilize NASA’s free and open data and space-based data from space agency partners.
      “It takes a variety of skills and perspectives to launch a mission into space, and NASA’s Space Apps Challenge brings people together across cultures and borders toward solving real world problems on Earth and in space,” said Nicky Fox, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “I am excited that this year’s NASA Space Apps Challenge participants will join in our global Heliophysics Big Year celebration. I look forward to seeing all the innovative ideas that our future generation puts forth.”
      This year, the NASA Space Apps Challenge welcomes 15 international space agency partners, including two new agencies: the Communications, Space & Technology Commission of Saudi Arabia and the Spanish Space Agency. NASA Space Apps also welcomes back the Australian Space Agency, Brazilian Space Agency, Canadian Space Agency, European Space Agency, Indian Space Research Organization, Italian Space Agency, Japan Aerospace Exploration Agency, Mexican Space Agency, National Space Activities Commission of Argentina, National Space Science Agency of Bahrain, Paraguayan Space Agency, South African National Space Agency, and the Turkish Space Agency.
      During the NASA Space Apps Challenge, participants around the world gather at hundreds of simultaneous in-person and virtual local events to address challenges submitted by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating artistic visualizations of NASA data to conceptualizing and developing informational apps and software programs.
      In keeping with this year’s theme, “The Sun Touches Everything,” NASA Space Apps invites participants to consider the far-reaching influence of the Sun on Earth and space science. The theme connects participants with NASA’s Heliophysics Division’s celebration of the Helio Big Year.
      After the hackathon, project submissions are judged by space agency experts. Winners are selected for one of 10 global awards and invited to an in-person celebration with NASA leadership and subject matter experts.
      NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse. The theme for the 2024 NASA Space Apps Challenge is funded by NASA Heliophysics Division.
      We invite you to register for the 2024 NASA Space Apps Challenge and choose a virtual or in-person local event near you at:
      Stay up to date with #SpaceApps by following these accounts:
      X: @SpaceApps
      Instagram: @nasa_spaceapps
      Facebook: @spaceappschallenge
      YouTube: @NASASpaceAppsChallenge
      View the full article
  • Check out these Videos

  • Create New...