Members Can Post Anonymously On This Site
NASA’s Lucy Spacecraft Discovers 2nd Asteroid During Dinkinesh Flyby
-
Similar Topics
-
By NASA
4 min read
NASA Selects 11 Space Biology Research Projects to Inform Biological Research During Future Lunar Exploration Missions
NASA announces the award of eleven grants or cooperative agreements for exciting new Space Biology research that will advance NASA’s understanding of how exposure to lunar dust/regolith impact both plant and animal systems.
As human exploration prepares to go beyond Earth Orbit, Space Biology is advancing its research priorities towards work that will enable organisms to Thrive In DEep Space (TIDES). The ultimate goal of the TIDES initiative is to enable long-duration space missions and improve life on Earth through innovative research. Space Biology supported research will enable the study of the effects of environmental stressors in spaceflight on model organisms, that will both inform future fundamental research, as well as provide valuable information that will better enable human exploration of deep space.
Proposals for these eleven projects were submitted in response to ROSES-2022 Program Element E.9 “Space Biology Research Studies” (NNH22ZDA001N-SBR). This funding opportunity solicited ground studies using plant or animal models (or their associated microbes) to characterize the responses of these organisms to lunar regolith simulant similar to that found at NASA candidate landing sites for future lunar exploration missions. This funding opportunity represents a collaboration between the Space Biology Program and NASA’s Astromaterials Research and Exploration Science (ARES) Division within the Exploration Architecture, Integration, and Science (EAIS) Directorate at the NASA Johnson Space Center, who will be supplying the lunar regolith simulant required for these studies.
Selected studies include (but are not limited to) efforts to 1) test the ability of lunar regolith to act as a growth substrate for crop-producing plants including grains, tomatoes and potatoes, 2) understand how growth in lunar regolith influences plant and microbial interactions, and how in turn, these interactions affect plant development and health, 3) identify and test bioremediation methods/techniques to enhance the ability of regolith to act as a growth substrate, and 4) understand how lunar dust exposure impacts host/microbial interactions in human-analogous model systems under simulated microgravity conditions.
Eleven investigators will conduct these Space Biology investigations from ten institutions in nine states. Eight of these awards are to investigators new to the Space Biology Program. When fully implemented, approximately $2.3 million will be awarded in fiscal years 2024-2027.
Plant Research Investigations
Simon Gilroy, Ph.D. University of Wisconsin, Madison
Tailoring Lunar Regolith to Plant Nutrition
Aymeric Goyer, Ph.D. Oregon State University
Growth, physiology and nutrition dynamics of potato plants grown on lunar regolith
simulant medium
Christopher Mason, Ph.D. Weill Medical College of Cornell University
Leveraging the microbes of Earth’s extreme environments for sustainable plant growth
in lunar regolith
Thomas Juenger, Ph.D. University of Texas, Austin
Engineering plant-microbial interactions for improved plant growth on simulated lunar regolith
Plant Early Career Research Investigations
Miranda Haus, Ph.D. Michigan State University
The sources and extent of root stunting during growth in lunar highland regolith and its impact on legume symbioses
Joseph Lynch, Ph.D. West Virginia University
The metabolomic impact of lunar regolith-based substrate on tomatoes
Jared Broddrick, Ph.D. NASA Ames Research Center
Phycoremediation of lunar regolith towards in situ agriculture
Shuyang Zhen, Ph.D. Texas A&M AgriLife Research
Investigating the impact of foliar and root-zone exposure to lunar regolith simulant on lettuce growth and stress physiology in a hydroponic system
Plant Small Scale Research Investigations
Kathryn Fixen, Ph.D. University of Minnesota
The impact of lunar regolith on nitrogen fixation in a plant growth promoting rhizobacterium
Animal Research Investigations
Cheryl Nickerson, Arizona State University
Effects of Lunar Dust Simulant on Human 3-D Biomimetic Intestinal Models, Enteric Microorganisms, and Infectious Disease Risks
Afshin Beheshti, Ph.D. NASA Ames Research CenterSpaceflight and Regolith Induced Mitochondrial Stress Mitigated by miRNA-based Countermeasures
Share
Details
Last Updated Nov 21, 2023 Related Terms
Biological & Physical Sciences Space Biology View the full article
-
By NASA
3 min read
NASA to Highlight Inclusion During Bayou Classic Event
NASA Logo.NASA NASA is bringing a clear message to the 50th Annual Bayou Classic Friday, Nov. 24 and Saturday, Nov. 25 – while exploring the universe for the benefit of all, it is equally invested in ensuring the participation of all in the agency and its discovery work.
The commitment will be on full display during NASA’s outreach and engagement activities at the Bayou Classic weekend in New Orleans. “Our message is simple – there’s space for everybody at NASA,” said Pamela Covington, Office of Communications director at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, which is leading the agency’s Bayou Classic planning. “We need everyone involved if we hope to accomplish our shared mission and truly benefit all humanity.”
The annual Bayou Classic event, which features a football game and a spirited Battle of the Bands, typically attracts more than 200,000 students and supporters from two Historically Black Colleges and Universities (HBCUs) – Southern University in Baton Rouge, Louisiana, and Grambling State University in Grambling, Louisiana – to New Orleans.
In addition to signage and social media messaging, NASA Stennis representatives will be on hand during Fan Fest activities Nov. 25 to interact and visit with event participants. Alumni and others will staff a NASA booth at Champions Square next to the Caesars Superdome from 9 a.m. CDT to 12 p.m., to talk about their career paths with the agency and to promote current internship and employment opportunities for minority students and others.
The outreach and engagement effort is part of an agencywide commitment to advance equity and reach deeper into underrepresented and underserved segments of society and is in support of the Biden-Harris Administration’s efforts to advance racial equity in the federal government. NASA’s 2022 Equity Plan outlines the agency’s efforts to increase participation in areas such as procurements and contracts, as well as grants and cooperative agreements. The agency also is working to eliminate visible and invisible barriers to full participation, and to increase NASA outreach to underserved communities. The agency is scheduled to update the plan and its progress by year’s end.
Frontline evidence of the agency’s commitment to inclusion also is seen in its plan to return humans, including the first woman and the first person of color, to the Moon through Artemis missions, powered by NASA’s SLS (Space Launch System) rocket. That is just one aspect of the agency’s across-the-board diversity work.
The NASA Minority University Research and Education Project is another example. Through the initiative, NASA provides financial awards to minority-serving institutions, including HBCUs, to assist faculty and students alike in STEM-related research efforts. The initiative also focuses on providing internship opportunities and career paths for minority members.
NASA also has launched a Science Mission Directorate Bridge Program to develop partnerships with underserved institutions such as HBCUs and to promote diversity, equity, inclusion, and accessibility within the agency. The primary focus is to help transition science and engineering students from undergraduate studies into graduate schools and/or employment by NASA or related institutions.
Along the same lines, a new NASA Space Tech Catalyst Prize seeks to recognize individuals and/or organizations that share effective best practices on ways to engage underrepresented and diverse space technology innovators, researchers, technologists, and entrepreneurs. The initiative is built on the premise that diversity leads to greater innovation, research, and mission success.
Social Media
Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #BayouClassic50, #NASA_HBCUs. Follow and tag these accounts:
Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
Details
Last Updated Nov 20, 2023 Editor Contact Location Stennis Space Center Related Terms
Mission Equity Stennis Space Center Explore More
9 min read Lagniappe
Article 6 days ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
Article 1 month ago 7 min read Lagniappe
Article 1 month ago Keep Exploring Discover Related Topics
About NASA Stennis
STEM Engagement at Stennis Space Center
Minority University Research & Education Project
SMD Bridge Program
Planning Information Science Mission Directorate Bridge Program Call for ProposalsAnticipated ROSES-22 Amendment or ROSES-23 New Program This page contains Planning…
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.