Members Can Post Anonymously On This Site
True Blue: High-Power Propulsion for Gateway
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Stephanie Dudley, Gateway’s mission integration and utilization manager, sits inside a high-fidelity HALO (Habitation and Logistics Outpost) mockup at NASA’s Johnson Space Center.NASA/Josh Valcarcel Stephanie Dudley sits at the intersection of human spaceflight and science for Gateway, humanity’s first lunar space station that will host astronauts and unique scientific investigations.
Gateway’s mission integration and utilization manager, Dudley recently posed for this photo in a high-fidelity mockup of the space station’s HALO (Habitation and Logistics Outpost), where astronauts will live, conduct science, and prepare for missions to investigate the lunar South Pole region. Dudley works with NASA’s partner space agencies and academia to identify science opportunities on Gateway.
HALO will host various science experiments, including the Heliophysics Environmental and Radiation Measurement Experiment Suite, led by NASA, and the Internal Dosimeter Array, led by ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency). The heliophysics experiment will fly on HALO’s exterior, and the dosimeter will be housed inside Gateway in a series of racks, mockups of which are shown to the right of Dudley in the image above. Both experiments will study solar and cosmic radiation to help the science community better understand how to protect astronauts and hardware during deep space travels to places like Mars.
“We are building [Gateway] for a 15-year lifespan, but definitely hope that we go longer than that,” Dudley recently said on Houston We Have a Podcast. “And so that many years of scientific study in a place where humans have never worked and lived long-term, Gateway is going to allow us to do that.”
Dudley pulls double duty as a deputy director for the Exploration Operations Office within NASA’s Moon to Mars Program, a role that connects her to Artemis science beyond Gateway, including science investigations on the Orion and Human Landing System spacecraft and lunar terrain vehicle.
“My work…is helping to make sure that across all of the six [Artemis] programs, including Gateway, we’re all focusing on utilization in the same way,” Dudley said.
Dudley’s team coordinates science payloads for Artemis II, the first mission to send humans to the Moon since 1972, and Artemis III, the first landing in the lunar South Pole region that is of keen interest to the global science community.
Gateway’s HALO will launch with the space station’s Power and Propulsion Element ahead of the Artemis IV mission in 2028, the first lunar mission to include an orbiting space station.
“Gateway sounds so science fiction, but it’s real,” Dudley recently said. “And we’re building it. And in a few years, it’s going to be around the Moon and that’s when the real work, the fun work in my opinion, is going to begin and science will never be the same.”
Gateway is humanity’s first lunar space station as a central component of the Artemis campaign that will return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
Gateway’s HALO (Habitation and Logistics Outpost), one of four Gateway modules where astronauts will live, conduct science and prepare for lunar surface missions.Thales Alenia Space An artist’s rendering of the Heliophysics Environmental and Radiation Measurement Experiment Suite, or HERMES, one of the three Gateway science experiments that will study solar and cosmic radiation.NASA An artist’s rendering of HALO in lunar orbit. The HERMES science experiment is shown on the top right corner of the space station element.NASA/Alberto Bertolin, Bradley Reynolds Learn More About Gateway Share
Details
Last Updated Oct 29, 2024 EditorBriana R. ZamoraContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
Gateway Space Station Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Humans in Space Johnson Space Center Science & Research Explore More
2 min read Gateway: Life in a Lunar Module
Article 7 days ago 1 min read Gateway Stands Tall for Stress Test
The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
Article 4 weeks ago 2 min read Through Astronaut Eyes, Virtual Reality Propels Gateway Forward
NASA astronauts are using virtual reality to explore Gateway. When they slip on their headsets,…
Article 7 months ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Gateway
Human Landing System
View the full article
-
By NASA
NASA/Ben Smegelsky Clouds curling around the full “blue” moon gives the night sky an eerie feel in this image from Aug. 19, 2024. As seen here, a blue moon is not actually blue; the third full moon in a season with four full Moons is called a “blue” moon.
Another moon will be visible in the sky the morning of Oct. 25: Jupiter’s icy moon Europa, the destination of NASA’s recently launched Europa Clipper, will be easily observable with binoculars on one side of Jupiter by itself.
Get more skywatching tips.
Image credit: NASA/Ben Smegelsky
View the full article
-
By NASA
Radioisotope Power Systems RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Overview Power to Explore Contest Kid-Friendly Videos FAQ 5 Min Read After 60 Years, Nuclear Power for Spaceflight is Still Tried and True
Workers install one of three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. More › Credits:
NASA Editor’s Note: Originally published on June 21, 2021.
Six decades after the launch of the first nuclear-powered space mission, Transit IV-A, NASA is embarking on a bold future of human exploration and scientific discovery. This future builds on a proud history of safely launching and operating nuclear-powered missions in space.
“Nuclear power has opened the solar system to exploration, allowing us to observe and understand dark, distant planetary bodies that would otherwise be unreachable. And we’re just getting started,” said Dr. Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Future nuclear power and propulsion systems will help revolutionize our understanding of the solar system and beyond and play a crucial role in enabling long-term human missions to the Moon and Mars.”
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Space nuclear power to explore the deepest, dustiest, darkest, and most distant regions of our solar system and beyond. NASA From Humble Beginnings: Nuclear Power Spawns an Age of Scientific Discovery
On June 29, 1961, the John’s Hopkins University Applied Physics Laboratory launched the Transit IV-A Spacecraft. It was a U.S. Navy navigational satellite with a SNAP-3B radioisotope powered generator producing 2.7 watts of electrical power — about enough to light an LED bulb. Transit IV-A broke an APL mission-duration record and confirmed the Earth’s equator is elliptical. It also set the stage for ground-breaking missions that have extended humanity’s reach across the solar system.
Since 1961, NASA has flown more than 25 missions carrying a nuclear power system through a successful partnership with the Department of Energy (DOE), which provides the power systems and plutonium-238 fuel.
“The department and our national laboratory partners are honored to play a role in powering NASA’s space exploration activities,” said Tracey Bishop, deputy assistant secretary in DOE’s Office of Nuclear Energy. “Radioisotope Power Systems are a natural extension of our core mission to create technological solutions that meet the complex energy needs of space research, exploration, and innovation.”
There are only two practical ways to provide long-term electrical power in space: the light of the sun or heat from a nuclear source.
We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today.
Alan Stern
Principal Investigator, NASA’s New Horizons Mission to Pluto and Beyond
“As missions move farther away from the Sun to dark, dusty, and harsh environments, like Jupiter, Pluto, and Titan, they become impossible or extremely limited without nuclear power,” said Leonard Dudzinski, chief technologist for NASA’s Planetary Science Division and program executive for Radioisotope Power.
That’s where Radioisotope Power Systems, or RPS, come in. They are a category of power systems that convert heat generated by the decay of plutonium-238 fuel into electricity.
“These systems are reliable and efficient,” said June Zakrajsek, manager for NASA’s Radioisotope Power Systems Program office at Glenn Research Center in Cleveland. “They operate continuously over long-duration space missions regardless of sunlight, temperature, charged particle radiation, or surface conditions like thick clouds or dust. They’ve allowed us to explore from the Sun to Pluto and beyond.”
RPS powered the Apollo Lunar Surface Experiment Package. They’ve sustained Voyager 1 and 2 since 1977, and they kept Cassini-Huygens’ instruments warm as it explored frigid Saturn and its moon Titan.
Today, a Multi-Mission Thermoelectric Generator (MMRTG) powers the Perseverance rover, which is captivating the nation as it searches for signs of ancient life on Mars, and a single RTG is sustaining New Horizons as it ventures on its way out of the solar system 15 years after its launch.
“The RTG was and still is crucial to New Horizons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute. “We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today.”
New Horizons carries seven scientific instruments and a radioisotope thermoelectric generator. The spacecraft weighs 1,060 pounds. NASA/JHUAPL Great Things to Come: Science and Human Exploration
Dragonfly, which is set to launch in 2028, is the next mission with plans to use an MMRTG. Part of NASA’s New Frontiers program, Dragonfly is an octocopter designed to explore and collect samples on Saturn’s largest moon, Titan, an ocean world with a dense, hazy atmosphere.
“RPS is really an enabling technology,” said APL’s Zibi Turtle, principal investigator for the upcoming Dragonfly mission. “Early missions like Voyager, Galileo, and Cassini that relied on RPS have completely changed our understanding and given us a geography of the distant solar system…Cassini gave us our first close-up look at the surface of Titan.”
According to Turtle, the MMRTG serves two purposes on Dragonfly: power output to charge the lander’s battery and waste heat to keep its instruments and electronics warm.
“Flight is a very high-power activity. We’ll use a battery for flight and science activities and recharge the battery using the MMRTG,” said Turtle. “The waste heat from the power system is a key aspect of our thermal design. The surface of Titan is very cold, but we can keep the interior of the lander warm and cozy using the heat from the MMRTG.”
As the scientific community continues to benefit from RPS, NASA’s Space Technology Mission Directorate is investing in new technology using reactors and low-enriched uranium fuel to enable a robust human presence on the Moon and eventually human missions to Mars.
Astronauts will need plentiful and continuous power to survive the long lunar nights and explore the dark craters on the Moon’s South Pole. A fission surface power system could provide enough juice to power robust operations. NASA is leading an effort, working with the DOE and industry to design a fission power system for a future lunar demonstration that will pave the way for base camps on the Moon and Mars.
NASA has also thought about viable ways to reduce the time it takes to travel to Mars, including nuclear propulsion systems.
As NASA advances its bold vision of exploration and scientific discovery in space, it benefits from 60 years of the safe use of nuclear power during spaceflight. Sixty years of enlightenment that all started with a little satellite called Transit IV-A.
News Media Contact
Jan Wittry
NASA’s Glenn Research Center
View the full article
-
By NASA
Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup for the Gateway lunar space station. Thales Alenia Space Teams at NASA, ESA (European Space Agency), and Thales Alenia Space, including astronauts Stan Love and Luca Parmitano, came together in Turin, Italy, this summer for a test run of Gateway, humanity’s first space station to orbit the Moon.
The group conducted what is known as human factors testing inside a mockup of Lunar I-Hab, one of four Gateway modules where astronauts will live, conduct science, and prepare for missions to the Moon’s South Pole region. The testing is an important step on the path to launch by helping refine the design of spacecraft for comfort and safety.
Lunar I-Hab is provided by ESA and Thales Alenia Space and is slated to launch on Artemis IV. During that mission, four astronauts will launch inside the Orion spacecraft atop an upgraded version of the SLS (Space Launch System) rocket and deliver Lunar I-Hab to Gateway in orbit around the Moon.
ESA, CSA (Canadian Space Agency), JAXA (Japan Aerospace Exploration Agency), and the Mohammad Bin Rashid Space Centre of the United Arab Emirates are providing major hardware for Gateway, including science experiments, the modules where astronauts will live and work, robotics, and life support systems.
International teams of astronauts will explore the scientific mysteries of deep space with Gateway as part of the Artemis campaign to return to the Moon for scientific discovery and chart a path for the first human missions to Mars and beyond.
A mockup of ESA’s Lunar I-Hab module, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.Thales Alenia Space An artist’s rendering of ESA’s Lunar I-Hab module in orbit around the Moon, one of four elements of the Gateway space station where astronauts will live, conduct science, and prepare for missions to the lunar South Pole Region.NASA/Alberto Bertolin, Bradley Reynolds Learn More About Gateway Share
Details
Last Updated Oct 22, 2024 EditorBriana R. ZamoraContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
Gateway Space Station Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Humans in Space Johnson Space Center Explore More
1 min read Gateway Stands Tall for Stress Test
The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
Article 3 weeks ago 6 min read NASA’s Artemis IV: Building First Lunar Space Station
Article 7 months ago 2 min read Gateway: Energizing Exploration
Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
Article 2 months ago
Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Gateway
Human Landing System
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The controlled descent of the Mars Curiosity rover included the use of propulsion rockets pointing to the surface to allow a gentle landing. The engine, shown firing in this illustration of Perseverance and the sky crane landing system relied on a pyrovalve that released the rocket fuel.Credit: NASA /JPL-Caltech The Curiosity and Perseverance Mars rovers continue to provide a wealth of information about the Red Planet. This was made possible in part by the sky crane landing systems that safely lowered them to the planet’s surface. Their successful descent, managed by eight powerful engines, depended on one small part – a valve.
The engines produced about 750 pounds of thrust each, so they required more fuel than a conventional valve could deliver, said Carl Guernsey, propulsion subsystem chief engineer for the Mars Sample Laboratory Mission.
“With the engines pointing down, we throttle up and increase the thrust, so we slow down,” said Guernsey. “At a certain altitude above the surface, you hold at a constant velocity to collect more sensor data, and then proceed with the rest of the descent.”
With only seconds for sensor data to identify the landing area and direct any last-minute diversion maneuvers, landing requires fuel available at the right time. To build the valve to help accomplish this task, NASA turned to a company that has provided the space program with reliable gas regulators since the 1950s. Through a series of mergers, by 2021, the original company, called Conax Florida, became part of Eaton based in Orchard Park, New York.
Working under contract with NASA’s Jet Propulsion Laboratory in Southern California, the company developed a new one-time-use pyrovalve to sit between the hydrazine fuel tank and engines. The zero-leak valve was the largest ever made of its type at the time, at three-fourths of an inch.
This one-time-use pyrovalve sat between the hydrazine fuel tank and the controlled-descent engines on the sky crane for the Curiosity and Perseverance Mars rovers. The zero-leak valve developed by Eaton also ensured no fuel was lost on the long flight to Mars.Credit: Eaton Corp. The Y-shaped pipe with a pair of leak-proof solid metal barriers prevented propellant from flowing. The valve contains a pyrotechnic charge that activates a piston called a flying ram, which shears off the barriers, allowing fuel to flow. But a problem arose during flight qualification testing. Sometimes the ram didn’t stay wedged in place at the bottom, posing a blockage risk.
The solution the team came up with had never been tried before – magnets at the bottom of the valve. But the successful Perseverance landing in 2021 proved it works. The same valve is included in the Perseverance rover and now enables commercial rocket-stage separation in space.
Read More Share
Details
Last Updated Oct 11, 2024 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read Tech Today: Spraying for Food Safety
Article 4 days ago 2 min read The Science of the Perfect Cup for Coffee
Material research is behind the design of a temperature-regulating mug
Article 2 weeks ago 3 min read Measuring Moon Dust to Fight Air Pollution
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Mars Perseverance Rover
The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…
How We Land on Mars
How does NASA get its Mars rovers and landers safely to the surface of the Red Planet? Parachutes, airbags, a…
Technology Transfer & Spinoffs
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.