Jump to content

Previous NASA Awards for In Space Production Applications


Recommended Posts

  • Publishers
Posted
Astronaut Kayla Barron works on a space agriculture study
NASA astronaut Kayla Barron works inside the Life Science Glovebox conducting botany research.
NASA

As of spring 2023, NASA has invested greater than $60M in more than twenty In Space Production Applications (InSPA) awards to U.S. entities seeking to demonstrate the production of advanced materials and products on the International Space Station.  These InSPA awards help the selected companies raise the technological readiness level of their products and move them to market, propelling U.S. industry toward the development of a sustainable, scalable, and profitable non-NASA demand for services and products manufactured in the microgravity environment of low-Earth orbit for use on Earth.

Advanced Materials

Flawless Photonics – Fabrication of Flawless Glass

Contact: Dr. Michael Vestel
Flawless Photonics of Los Altos Hills, California, in partnership with the University of Adelaide, Axiom Space, and Visioneering Space has been selected for their proposal to develop specialized glass manufacturing hardware to process Heavy-Metal Fluoride Glasses (HMFG) in microgravity. HMFG glasses are used in the terrestrial manufacturing of exotic optical fibers and other optics applications. Without convective forces present in 1g, HMFG made in microgravity are expected to achieve the ideal amorphous microstructure during synthesis, eliminating light scattering defects that limit lasing power and transmission over long fiber lengths.

Apsidal – Intelligent Glass Optics

Contact: Dr. Amrit De
Apsidal LLC. of Los Angeles, California, is developing the IGO module to process various types of complex glasses in space from which optical fibers, fiber lasers, magnetic fibers, super-continuum sources, capillary optics and adiabatic tapers can be drawn. One of the key innovations is a custom Laser Doppler Sensor for real-time in-situ analysis and feedback control of the manufacturing process. Additionally, this technology is Artificial Intelligence (AI) assisted to be adaptive and to optimize production in a low Earth orbit (LEO) environment. The microgravity environment of space is needed as gravity-induced material convection and sedimentation in complex glasses on Earth subsequently leads to unwanted crystallization, thus creating defects which reduce performance. Market areas for products from this module include specialty fibers for low-loss and high bandwidth communications, high-power fiber-amplifiers, IR counter measures, supercontinuum sources, medical applications, remote sensing, X-ray optics, and laser processing.

Fiber Optic Manufacturing in Space – Space Fibers

Contact: Dr. Dmitry Starodubov
FOMS Inc of San Diego, California, has developed a facility-class instrument for fiber fabrication in the microgravity environment to improve the quality of specialty optical fibers with the promise of up to 100x reduction in insertion loss due to the suppression of crystallization and phase separation. Two previous iterations of the facility have flown to the space station, with the third generation scheduled to launch on the 25th SpaceX cargo resupply services mission in May 2022.

Mercury Systems Torrance – Fiber Optic Production

Contact: Eric Rucker
Mercury Systems of Torrance, California, has developed a facility-class instrument for fiber fabrication in the microgravity environment to improve the quality of specialty optical fibers with the promise of up to two orders of magnitude reduction in insertion loss compared to traditional SiO2 fibers due to the suppression of crystallization and sedimentation. The first generation of the facility has flown to the space station producing over 90m of ZBLAN optical fiber from a fluorinated exotic glass preform composed of Zirconium, Barium, Lanthanum, Aluminum, and Sodium (ZrF4-BaF2-LaF3-AlF3-NaF). The second-generation FOP-2 launches on SpaceX CRS-25 in May 2022 using a nitrogen purge previously demonstrated in reduced gravity on a parabolic flight.

Redwire/Made In Space – Turbine Ceramic Manufacturing Module

Contact: Justin Kugler
Made In Space of Jacksonville, Florida, a Redwire company, is developing the TCMM to provide proof-of-principal for single-piece ceramic turbine blisk (blade + disk) manufacturing in microgravity for terrestrial use. Launched in October 2020 on Northrop Grumman’s CRS-14 mission, TCMM successfully demonstrated ceramic additive manufacturing in space for the first time in history. TCMM was also the first demonstration of stereolithography ceramic fabrication in space. The project focuses on advanced materials engineering ultimately leading to reductions in part mass, residual stress, and fatigue. Strength improvements of even 1-2 percent, as a result of being manufactured in microgravity, can yield years to decades of superior service life. Market applications include high performance turbines, nuclear plants, or internal combustion engines.

Redwire/Made In Space – Turbine Superalloy Casting Module

Made In Space of Jacksonville, Florida, a Redwire company, is developing the TSCM to provide proof of principle for polycrystal superalloy part manufacturing in microgravity for terrestrial use. Superalloys thermally processed in microgravity could have improved microstructure and mechanical properties over superalloys processed on Earth. This work expands utilization of the ISS National Lab into new commercial product areas not previously investigated.

Delivered to space station on SpaceX CRS-24 in December 2021, TSCM investigates potential improvements in superalloy microstructure by heat treating in microgravity. Market applications include turbine engines in industries such as aerospace and power generation.

Redwire/Techshot – Pharmaceutical In-space Laboratory 

Contact: Rachel Ormsby
Redwire Corporation Inc. of Greenville, Indiana, has been selected for its proposal to produce small, uniform crystals as stable seed batches for pharmaceutical and institutional research customers seeking improvements/refinements in product purification, formulation and/or delivery using crystalline formulations. Their Pharmaceutical In-space Laboratory Bio-crystal Optimization Xperiment (PIL-BOX) Dynamic Microscopy Cassette (DMC) will be capable of testing multiple crystallization conditions and providing samples to be returned to Earth for analysis. When grown in microgravity, crystals are produced more uniformly and have very low size coefficients of variation thereby allowing a more stable crystal growth, high concentration, and low viscosity parenteral formulation. The proposed innovation will provide manufacturing services to companies, institutions, and agencies pursuing uniform crystallization research.

United Semiconductors – Semimetal-Semiconductor Composite Bulk Crystals

Contact: Dr. Dutta
United Semiconductors of Los Alamitos, California, has been selected for their proposal to produce semimetal-semiconductor composite bulk crystals commonly used in electromagnetic sensors for solving challenges in the energy, high performance computing and national security sectors. Together with teammates Axiom Space of Houston and Redwire of Greenville, Indiana, United Semiconductors intends to validate the scaling and efficacy of producing larger semimetal-semiconductor composite crystals under microgravity conditions with perfectly aligned and continuous semimetal wires embedded across the semiconductor matrix. If successful at eliminating defects found in those manufactured with terrestrial materials, United Semiconductors will have developed a processing technology for creating device-ready wafers from space-grown crystals.

image of crystal growth in a semiconductor composite wafer
Optical Micrograph depicting the expected morphology of Semimetal-Semiconductor Composite (SSC) wafers to be extracted from space grown bulk crystals. The continuous semimetal needles embedded in semiconductor matrix will provide high yield of high-performance electromagnetic sensors. Currently this desirable morphology is seen only in a small fraction of the terrestrial grown bulk crystals. Space grown bulk crystals is anticipated to provide a significant volume of the desirable morphology.
United Semiconductors LLC
image of crystal growth in a semiconductor composite wafer
Optical Micrograph depicting the morphology of Semimetal-Semiconductor Composite (SSC) wafers extracted from terrestrial grown bulk crystals. Discontinuous semimetal needles embedded in semiconductor matrix leads to poor yield of high-performance electromagnetic sensors.
United Semiconductors LLC

Redwire/Made In Space – Industrial Crystallization Facility

Contact: Justin Kugler
Made In Space of Jacksonville, Florida, a Redwire company, is developing the ICF to provide proof-of-principle for diffusion-based crystallization methods to produce high-quality optical crystals in microgravity relevant for terrestrial use. ICF launched to the International Space Station on Northrop Grumman’s CRS-15 on February 20, 2021. It was the first facility to grow inorganic potassium dihydrogen phosphate (KDP) crystals aboard space station, offering important insight into microgravity-enabled growth processes for industrial crystals, which could yield opportunities for commercial production on-orbit. Market applications include ultra-fast optical switches, optical waveguides, optical circuit lithography, high-efficiency ultraviolet light production, and terahertz wave sensors. 

Tissue Engineering & Biomanufacturing

LambdaVision/Space Tango –Retinal Implant

Contact: Alain Berinstain
Space Tango of Lexington, Kentucky, and its partner, LambdaVision of Farmington, Connecticut, are developing a system to manufacture protein-based retinal implants, or artificial retinas, in microgravity. The market for this work is the millions of patients suffering from retinal degenerative diseases, including retinitis pigmentosa (RP) and age-related macular degeneration (AMD), a leading cause of blindness for adults over 55 years old. This effort builds on a validation flight completed in late 2018 that demonstrated the proof of concept for generating multilayered protein-based thin films in space using a miniaturized layer-by-layer manufacturing device. This project will further mature the manufacturing system, producing protein-based artificial retinas in space that would be returned to Earth for preclinical evaluation of the technology. This work will establish the necessary regulatory requirements for producing biomedical products in space station, including current Good Manufacturing Practices (cGMP). The microgravity environment of space hinders convection and sedimentation in the manufacturing process, enabling more uniform layers, improved stability and higher quality thin films than can be produced on Earth. The team successfully produced 200 layers of protein on their most recent flight on SpaceX Crew-4.

diagram of a human eye and an artificial retina
Using greater uniformity and better film deposition in microgravity to produce 100 layers of precisely aligned, precisely structured layers of bacterial rhodopsin crystals (vision protein) sandwiched between 100 layers of precisely deposited composite material with sufficient quality to enable an implantable artificial retina to FDA approval.
LambdaVision

Redwire/Made In Space – Manufacturing of Semiconductors and Thin-film Integrated Coatings (MSTIC)

Contact: Justin Kugler
Made In Space of Jacksonville, Florida, a Redwire company, is developing the MSTIC facility as an autonomous, high throughput manufacturing capability for production of high quality, lower cost semiconductor chips at a rapid rate. Terrestrial semiconductor chip production suffers from the impacts of convection and sedimentation in the manufacturing process. Fabricating in microgravity is expected to reduce the number of gravity-induced defects, resulting in more usable chips per wafer. Market applications include semiconductor supply chains for telecommunications and energy industries.

Auxilium Biotechnologies/Space Tango – Drug Delivery Medical Devices

Contact: Dr. Jacob Koffler
Auxilium Biotechnologies with Space Tango has been selected for its proposal to develop a second-generation drug-delivery medical device to more effectively treat people who have sustained traumatic peripheral nerve injury. Auxilium’s Gen 1.0 NeuroSpan Bridge is a biomimetic nerve regeneration device that guides and accelerates nerve regeneration, eliminating the need for a patient to sacrifice a nerve in the leg to repair a nerve in the arm or face. Auxilium will use its expertise in fast, high-resolution 3D-printing to adapt its proprietary platform to a Gen 2.0 3D-print device in microgravity by adding novel drug delivery nanoparticles with the potential to substantially accelerate regeneration and improve functional outcomes for people on Earth.

Lawrence Livermore National Lab/Space Tango – VAM Organ Production

Contact: Dr. Maxim Shusteff
Lawrence Livermore National Laboratory, located in Livermore, California, in partnership with Space Tango, has been selected for their proposal to adapt their terrestrial volumetric 3D bioprinting device for use in microgravity to demonstrate production of artificial cartilage tissue in space. The Volumetric Additive Manufacturing (VAM) technology is a revolutionary, ultra-rapid 3D printing method that solidifies a complete 3D structure from a photosensitive liquid resin in minutes. Because of the absence of settling and gravity-driven buoyancy and convective flows in the prepolymer, the cartilage tissues manufactured and matured in microgravity are expected to have superior structural, organizational, and mechanical properties suitable for use in long-term tissue repair and replacement.

University of Connecticut, STORRS/Axiom – Biomimetic Fabrication of Multifunctional DNA-inspired Nanomaterials

Contact: Dr. Yupeng Chen
The University of Connecticut, out of Storrs, Connecticut, in partnership with Eascra Biotech of Boston, Massachusetts and Axiom Space of Houston has been selected for their proposed biomimetic fabrication of multifunctional nanomaterials, a cutting-edge breakthrough in biomedicine that can benefit from microgravity in space to accomplish controlled self-assembly of DNA-inspired Janus base nanomaterials (JBNs). These JBNs will be used as effective, safe and stable delivery vehicles for RNA therapeutics and vaccines, as well as first-in-kind injectable scaffolds for regenerative medicine. By leveraging the benefits of microgravity, the UConn/Eascra team expects to mature in-space production of different types of JBNs with more orderly structures and higher homogeneity over what is possible using terrestrial materials, improving efficacy for mRNA therapeutics and structural integrity for cartilage tissue repair.

diagram of mRNA therapeutics manufacturing process
In-space manufacturing of DNA-inspired Janus base nanomaterials for delivery of mRNA therapeutics and vaccines, and tissue repair and regeneration.
Dr. Yupeng Chenu

BioServe Space Technologies with University of Colorado – Expansion of Hematopoietic Stem Cells

Contact: Dr. Louis Stodieck
BioServe Space Technologies and The University of Colorado of Boulder, Colorado, in collaboration with the Mayo Clinic, ClinImmune Cell and Gene Therapy (University of Colorado Anschutz Medical Campus), RheumaGen, and with support from Sierra Space has been selected for their proposal to develop a specialized bioreactor that will produce large populations of Hematopoietic Stem Cells (HSCs) in microgravity to treat serious medical conditions including blood cancers (leukemias, lymphomas, multiple myeloma), blood disorders, severe immune diseases, and certain autoimmune diseases, such as rheumatoid arthritis. Expansion of HSCs in microgravity is expected to result in greater stem cell expansion with less cell differentiation than is seen in 1g. If successful, the technology may enable safe and effective cell therapy transplantation, especially in children and younger adults, where long-term bone marrow cell repopulation is critical to the patient’s lifetime health.

image of an astronaut working with an experiment
Astronaut Thomas Pesquet working in the Space Automated Bioproduct Laboratory (SABL). This image shows two SABL units, one open and one closed. SABL will be used for growing and expanding BioServe’s stem cells on board the ISS.
NASA

Cedars Sinai Regenerative Medicine Institute/Axiom – Stem Cell Therapy

Contact: Dr. Clive Svendsen
Cedars-Sinai Regenerative Medicine Institute, located in Los Angeles in partnership with Axiom Space of Houston has been selected for proposing to use cutting-edge methods related to the production and differentiation of induced pluripotent stem cells (iPSCs) on the International Space Station. Cedars-Sinai will explore in-space production of stem cells into heart, brain, and blood tissues in support of regenerative medicine uses on Earth. While stem cells and stem cell-derived tissues hold great promise for use in research and as clinical-grade therapeutic agents, safe and efficient expansion of stem cells and their derivatives continues to be a major challenge on Earth. Generating, expanding, and differentiating cells at scale in the microgravity environment of space with sufficient yields of a constant therapeutic cell product that meets FDA biologics requirements may be the answer to overcome those challenges.

Redwire/Techshot – BioFabrication Facility

Contact: Rich Boling
Techshot of Greenville, Indiana, a Redwire company, is developing the BFF as a space-based 3D biomanufacturing platform capable of printing with live human cells (autologous or allogenic). The facility contains an XYZ gantry with multiple print heads and a bioreactor cassette in the X-Y plane. Without the addition of scaffolding or chemical bio-ink thickening agents, attempts to 3D print with cells on Earth only results in creating a puddle. With scaffolding and thickening agents, organ-like shapes can be printed on Earth, but they cannot function as such. BFF prints in space with low viscosity bio-inks that only contain cells and nutrients, which enable cells to remain healthy and mobile – a necessity for creating solid thick tissue. Following a weeks-long in-space conditioning phase inside a special Redwire bioreactor, the tissue constructs are strong enough to resist gravity and remain viable following their return to Earth. In 2020, Redwire manufactured test prints of a partial human meniscus aboard the International Space Station for the company’s DoD customer, the 4-Dimensional Bioprinting, Biofabrication, and Biomanufacturing, or 4D Bio3 program, based at Uniformed Services University of the Health Sciences. The program is a collaboration between the university and The Geneva Foundation, a non-profit organization that advances military medical research. A second round of printing in space for 4D Bio3 is scheduled for late 2022 after delivery of a 2nd generation printer on SpaceX CRS-26.  Redwire is planning additional bioprinting operations with the BFF, such as the Fabrication in Austere Military Environments (FAME) bioprinting program. Market applications include human tissue and organ repair or replacement.

Redwire/Techshot – Cell Reprogramming Facility

Contact: Rich Boling
Techshot of Greenville, Indiana, a Redwire company, is developing the CRF to manufacture induced pluripotent stem cells (iPSCs) in orbit using adult cells, then enabling the cells to develop into many other types of cells, that can be used inside the BFF bioprinter and on Earth for regenerative medicine, especially cell therapies. The first element of the Cell Factory system – the CRF – is in development now. Market applications include cell therapies for restorative health and autologous cell sourcing for bioprinting and vascular applications.

Cedars Sinai/Space Tango – Stem Cell Production

Contact: Alain Berinstain
Space Tango of Lexington, Kentucky, and its partner Cedars-Sinai of Los Angeles, California, are developing pilot-scale systems for the production in space of large batches of stem cells to be used in personalized medical treatment for a variety of diseases. The development of induced pluripotent stem cells (iPSC) for commercial personalized medicine applications is done in space because the work to date on the space station demonstrates stem cells retain their “stemness” for longer durations in microgravity, allowing a delay of differentiation that has the potential to enable larger batches of cells to be produced. The pilot-scale systems, built for the space station to serve as a basis for future commercial manufacturing systems, will incorporate regulatory strategies to support FDA clinical trial production of personalized medicine stem cell therapies on the space station. Including current Good Manufacturing Practices (cGMP) conditions, required for the production of stem cell therapies for human use in patients.

Sanford/Space Tango – Integrated Space Stem Cell Orbiting Lab

Contact: Alain Berinstain
Space Tango of Lexington, Kentucky, and its partners at UC San Diego/Sanford Consortium in La Jolla, California, are working to establish a new on-orbit biomedical sector for stem cell advancement, with a fully operational self-sustaining orbital laboratory anticipated by 2025. The team is working to refine current hardware capabilities and process flows, extending the capabilities of ground-based laboratories with regular access to the space station via secured flight opportunities. Stem cells differentiate into tissue specific progenitors that can be used in microgravity to better understand aging and immune dysfunction, providing an opportunity to accelerate advances in regenerative medicine and the development of potential new therapeutic approaches. The target market for this orbital laboratory is a new approach to stem cell translational medicine.

Wake Forest Institute of Regenerative Medicine/Axiom – Engineered Liver Tissue

Contact: Dr. Anthony Atala

Wake Forest Institute for Regenerative Medicine (WFIRM), located in Winston-Salem, North Carolina, has partnered with Axiom Space and BioServe Space Technologies to pursue a groundbreaking initiative. Their proposal takes advantage of the microgravity environment to develop and validate a platform that supports a ‘building block’ strategy for in-space manufacturing of vascularized and perfused liver tissue as a bridge to transplantation. This is a continuation of the NASA Centennial Vascular Tissue Challenge, where WFIRM teams won first and second place for creating metabolically active thick liver tissue that retained function for thirty days. The overarching goal is to enhance the formation of a microcapillary system within a perfusable 3D bioprinted vascularized engineered liver tissue constructs for biomanufacturing clinical-scale liver tissue constructs that allow integration into the recipient’s peripheral circulation for the treatment of liver disease. Once validated, this platform technology can produce multiple tissue construct types, including kidney and pancreas, among others. In Phase 1a, the team plans to evaluate various 3D bioprinted designs for vascularized tissue constructs to be evaluated in microgravity to identify the optimal parameters to produce liver tissue that is suitable in size to serve as a bridge to regeneration or transplantation. Phases 2 and 3 will involve biomanufacturing liver tissue constructs of the optimal design for human clinical trials and process scale-up for future commercialization.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Axiom Mission 4 and Expedition 73 crews join together for a group portrait inside the International Space Station’s Harmony module. In the front row (from left) are Ax-4 crewmates Tibor Kapu, Peggy Whitson, Shubhanshu Shukla, and Sławosz Uznański-Wiśniewski with Expedition 73 crewmates Anne McClain and Takuya Onishi. In the rear are, Expedition 73 crewmates Alexey Zubritskiy, Kirill Peskov, Sergey Ryzhikov, Jonny Kim, and Nichole Ayers.Credit: NASA NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
      The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
      Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
      The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Monday, July 14
      4:30 a.m. – Hatch closing coverage begins on NASA+.
      4:55 a.m. – Crew enters spacecraft followed by hatch closing.
      6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7:05 a.m. – Undocking
      NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jul 11, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Commercial Space Commercial Space Programs Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX). NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.
      The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.
      Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.
      “Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”
      A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.
      “Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”
      Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  
      Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.
      Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.
      Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.
      After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.
      Explore More
      2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test
      Article 2 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By Amazing Space
      MUSK Says It's Time To Scarp the Space Station - Why He's Wrong!
    • By European Space Agency
      Image: The varied landscape of England’s Lake District is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
    • By NASA
      To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
      Take a tour through this section of the Cat’s Paw Nebula.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
  • Check out these Videos

×
×
  • Create New...