Jump to content

Progress Continues Toward NASA’s Boeing Crew Flight Test to Station


NASA

Recommended Posts

  • Publishers

NASA and Boeing are working to complete the agency’s verification and validation activities ahead of Starliner’s first flight with astronauts to the International Space Station. While Boeing is targeting March to have the spacecraft ready for flight, teams decided during a launch manifest evaluation that a launch in April will better accommodate upcoming crew rotations and cargo resupply missions this spring.

Inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 19, 2023, the Starliner team works to finalize the mate of the crew module and new service module for NASA's Boeing Crew Flight Test.
The Starliner team works to finalize the mate of the crew module and new service module for NASA’s Boeing Crew Flight Test that will take NASA astronauts Barry “Butch” Wilmore and Sunita “Suni” Williams to and from the International Space Station.
Boeing/John Grant

Once the spacecraft meets the agency’s safety requirements, NASA’s Boeing Starliner Crew Flight Test (CFT) will see astronauts Butch Wilmore and Suni Williams perform the first crewed mission of the spacecraft designed to take astronauts to and from the orbital laboratory.

Ahead of CFT, Boeing has completed P213 tape removal in the upper dome of the Starliner crew compartment and work is underway to remove or remediate the tape in the lower dome of the spacecraft. These hardware remediation efforts inside the Starliner production facility at NASA Kennedy are expected to be completed during the next several weeks. After the P213 tape remediation efforts conclude, engineers will conduct final assessments to ensure acceptable risk of any remaining tape.

A set of parachutes is on track to be delivered and installed on the CFT spacecraft by the end of this year to support the current target launch date. Separately, the team also is planning a drop test of Starliner’s updated drogue and main parachutes. The parachutes will incorporate a planned strengthening of main canopy suspension lines and the recent design of the drogue and main parachute soft-link joints, which will increase the safety factor for the system. The drop test is planned for early 2024 based on the current parachute delivery schedule.

Boeing and NASA also are planning modifications to the active thermal control system valves to improve long-term functionality following a radiator bypass valve issue discovered during ground operations earlier this year. As discussed during a Starliner media teleconference in June, teams have modified the spacecraft hardware and identified forward work to prevent a similar issue in the future. Options include a system purge to prevent stiction, component upgrades and operational mitigations.

Additionally, about 98% of the certification products required for the flight test are complete, and NASA and Boeing anticipate closure on remaining CFT certification products early next year. Meanwhile, NASA and Boeing have made significant progress on requirement closures related to manual crew control of the spacecraft and abort system analysis.

The latest version of Starliner’s CFT flight software completed qualification testing and is undergoing standard hardware and software integration testing inside Boeing’s Avionics and Software Integration Lab. Starliner’s crew and service modules remain mated and await continuation of standard preflight processing.

The United Launch Alliance Atlas V rocket also is in Florida at Cape Canaveral Space Force Station awaiting integration with the spacecraft.

The NASA astronauts who will fly aboard CFT continue to train for their roughly eight-day mission to the orbiting laboratory, which includes working with operations and mission support teams to participate in various simulations across all phases of flight.

Starliner completed two uncrewed flight tests, including Orbital Flight Test-2, which docked to the space station on May 21, 2022, following a launch two days prior from Kennedy. The spacecraft remained docked to space station for four days before successfully landing at the White Sands Missile Range in New Mexico.

Follow NASA’s commercial crew blog or CFT mission blog for the latest information on progress. Details about NASA’s Commercial Crew Program can be found by following the commercial crew blog@commercial_crew on X, and commercial crew on Facebook.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.
      NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.
      Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.
      During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.
      The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.
      Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.
      Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.
      Social Media
      Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts:
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
      Details
      Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      3 min read NASA to Highlight Inclusion During Bayou Classic Event 
      Article 1 week ago 9 min read Lagniappe
      Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
      Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      NASA/Charles Beason Artemis II NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon.

      From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission during their visit to NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27.
      Image credits: NASA/Charles Beason
      The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft.
      NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars.
      For more on NASA SLS visit:
      https://www.nasa.gov/sls
      News Media Contact
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      corinne.m.beckinger@nasa.gov
      View the full article
    • By NASA
      (Oct. 4, 2023) — The Roscosmos Progress 84 cargo craft is pictured docked to the International Space Station’s Poisk module.NASA NASA will provide live launch and docking coverage of the Roscosmos Progress 86 cargo spacecraft carrying about three tons of food, fuel, and supplies for the Expedition 70 crew aboard the International Space Station.
      The unpiloted spacecraft is scheduled to launch at 4:25 a.m. EST on Friday, Dec. 1 (2:25 p.m. Baikonur time), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      NASA coverage will begin at 4 a.m. on the NASA+ streaming service via the web or the NASA app. Coverage also will air live on NASA Television, YouTube, and on the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
      The Progress spacecraft will be placed into a two-day, 34-orbit journey to the station, leading to an automatic docking to the Poisk module at 6:14 a.m. Sunday, Dec. 3. Coverage of rendezvous and docking will begin at 5:30 a.m. on NASA Television and the agency’s website.
      The spacecraft will remain at the orbiting laboratory for approximately six months, then undock for a destructive but safe re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 23 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which humans have learned to live and work in space for extended periods of time. The space station is a springboard for the development of commercial destinations in space and a low Earth orbit economy, as well as NASA’s next great leaps in exploration, including Artemis missions to the Moon and eventually Mars.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Julian Coltre
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov

      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Nov 28, 2023 Related Terms
      Missions International Space Station (ISS) View the full article
    • By NASA
      Record-breaking NASA astronaut Frank Rubio provides the first Spanish-language video tour of humanity’s home in space – the International Space Station.
      Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American.
      The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website.
      Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth.
      The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research.
      Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back.
      Get the latest NASA space station news, images and features on Instagram, Facebook, and X.
      Keep up with the International Space Station, its research, and crew at:
      https://www.nasa.gov/station
      -end-
      María José Viñas
      Headquarters, Washington
      240-458-0248
      maria-jose.vinasgarcia@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
    • By NASA
      Artemis II Astronauts Check Out Some Flight Hardware on This Week @NASA – November 24, 2023
  • Check out these Videos

×
×
  • Create New...