Jump to content

The Marshall Star for October 25, 2023


Recommended Posts

  • Publishers
Posted
17 Min Read

The Marshall Star for October 25, 2023

A man with an open-mouthed smile wears a balloon hat made at the Fall Family Fest alongside children who are also enjoying their balloon toys during a Bingo round.
A man with an open-mouthed smile wears a balloon hat made at the Fall Family Fest alongside children who are also enjoying their balloon toys during a Bingo round.
Credits: NASA/Charles Beason

Marshall Team Members Enjoy Beginning of Autumn at Fall Family Fest

By Celine Smith

Team members at NASA’s Marshall Space Flight Center and their family members participated in the festivities of Fall Family Fest Oct. 19 at the walking trail behind Building 4315.

“Once the rain threat was gone, it was the perfect fall afternoon to welcome back over a thousand NASA family members for the first time since COVID-19,” said Jose Matienzo, who is the operations manager of the Marshall Exchange, which hosted the event.

A man with an open-mouthed smile wears a balloon hat made at the Fall Family Fest alongside children who are also enjoying their balloon toys during a Bingo round.
A man with an open-mouthed smile wears a balloon hat made at the Fall Family Fest alongside children who are also enjoying their balloon toys during a Bingo round.
NASA/Charles Beason

The Exchange provided free barbecue and beverages for attendees. A food truck also provided ice cream treats.

Several rocket inflatables and a balloon artist were present for children to enjoy. Falcon Punch, a band comprised of Marshall engineers, performed rocking classics for attendees. Additionally, the Exchange hosted several rounds of Bingo for guests as well.

Fall Family Fest also featured activities for participants to share their interests with others. Artisans displayed their handcrafted goods, paintings, and photographs. Bakers brought deserts for attendees to sample and judge who made the best one. Car enthusiasts entered their prized vehicles into a competition with the crowd choosing their favorites.

“I had a great time meeting some of our new employees and reconnecting with longtime friends at the Fall Festival,” said Joseph Pelfrey, acting center director. “It’s fun to see the Marshall family not just working together but having fun together. This is how we build the cultural fabric of Marshall for the future.”

The event was a space for team members and families to unwind, reconnect and enjoy the turn of the season.

“It felt so good to see so many old friends, new faces, their families, and retirees on a beautiful fall afternoon having a good time,” Matienzo said.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Priorities, Leadership Stressed at Mission Success is in Our Hands Forum; Jennifer Robinson Receives Golden Eagle Award

By Wayne Smith

Garrett Harencak, a retired Air Force major general and Jacobs vice president and president of Mission Support and Test Services LLC, said determining priorities and practice are crucial steps toward establishing a culture focused on mission success and safety during his keynote address for the Mission Success is in Our Hands Shared Experiences Forum.

The Oct. 19 event was in Building 4203 at NASA’s Marshall Space Flight Center. Mission Success is in Our Hands is a safety initiative collaboration between Marshall and Jacobs.

Garrett Harencak, Jacobs vice president and president of Mission Support and Test Services LLC, makes a point during his presentation at the Mission Success is in Our Hands hybrid Shared Experiences Forum on Oct. 19.
Garrett Harencak, Jacobs vice president and president of Mission Support and Test Services LLC, makes a point during his presentation at the Mission Success is in Our Hands hybrid Shared Experiences Forum on Oct. 19.
NASA/Danielle Burleson

Harencak also shared his experiences in working and leading nuclear safety, high hazard projects, and conducting operations in the nuclear and national security industries. Using the analogy of a lion chasing chipmunks or zebras, he said leaders must focus on the most important tasks in a mission as opposed to spending time on lesser objectives. Harencak said that while a lion is quick and nimble enough to chase chipmunks, the rodent does not provide as much nutritional value to a lion’s pride when compared to a zebra.

“Are you chasing chipmunks or zebras?” Harencak asked during his presentation. “You have to focus on what matters most. And when you tell your team members to chase chipmunks, they know it’s not the most important thing they should be doing that day.”

He also stressed the importance of practicing a routine to be prepared for an unplanned event to happen. “The value of practice and repetition is that it allows you to overcome when things go wrong, and things will go wrong,” Harencak said. “Practice reduces fear. Without practice, what follows fear is panic, and what follows panic are bad decisions.”

Golden Eagle Award winner Jennifer Robinson, center, receives a plaque commemorating her award during the Oct. 19 Mission Success is in Our Hands event. Joining Robinson are Bill Hill, left, director of the Safety and Mission Assurance Directorate at Marshall, and Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group.
Golden Eagle Award winner Jennifer Robinson, center, receives a plaque commemorating her award during the Oct. 19 Mission Success is in Our Hands event. Joining Robinson are Bill Hill, left, director of the Safety and Mission Assurance Directorate at Marshall, and Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group.
NASA/Danielle Burleson

In talking about leadership, Harencak said it’s everyone’s responsibility to “be the boss you always wanted to work for” in building a culture of mission success, particularly in a high-hazard business.

“It’s a constant struggle as leaders to build an atmosphere that allows everyone to do what’s necessary to make sure we do it safely and securely,” Harencak said.

Jennifer Robinson was awarded the Golden Eagle Award during the event. Robinson, a Jacobs Space Exploration Group employee, is the SLS (Space Launch System) debris analysis team lead. The team is responsible for analyzing the launch debris environment and identifying the debris risk to SLS. Bill Hill, director of the Safety and Mission Assurance Directorate at Marshall, said Robinson’s team developed a process for evaluating potential debris issues during countdown in the months leading up to the Artemis I launch.

Eight new testimonial banners are displayed as part of the Mission Success is in Our Hands Shared Experiences Forum
Eight new testimonial banners are displayed as part of the Mission Success is in Our Hands Shared Experiences Forum
NASA/Danielle Burleson

“This process subsequently was adopted as the standing operating procedure that allows for imagery and debris teams to work together to disposition debris findings during critical hours leading to launch,” Hill said.

Since 2015, the Golden Eagle Award has been presented by Mission Success is in Our Hands. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums.

As part of the final Shared Experiences Forum of the year, the Mission Success committee displayed eight new testimonial banners featuring Marshall team members as part of its rebranding. The banners will be placed across the center.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Marshall Kicks Off Participation in 2023 Combined Federal Campaign

NASA’s Marshall Space Flight Center kicked off its participation in the CFC (Combined Federal Campaign) Oct. 17 after raising more funds than any other large federal agency in the Greater Tennessee Valley Zone last year.

The CFC Kickoff Charities Fair was held in Marshall’s Activities Building 4316. Ten charities from the Tennessee Valley participated in the event to talk about their needs and how Marshall team members could help or get involved through volunteering. This year’s theme is “Give Happy.”

Marshall Associate Director, Technical, Larry Leopard, welcomes team members to the CFC Kickoff Charities Fair.
Marshall Associate Director, Technical, Larry Leopard, welcomes team members to the CFC Kickoff Charities Fair.
NASA/Alex Russell

Every year, federal workers come together to raise money and volunteer for their favorite charities. The CFC, in its 62nd year, is the world’s largest and most successful annual workplace charity campaign for federal employees and retirees. Since its inception, the campaign has raised nearly $8.7 billion for charities and people in need.

During the 2022 campaign year, Marshall team members pledged $295,454. The 2023 CFC solicitation period started Oct. 2 and runs through Jan. 15, 2024. Marshall’s goal this year is to increase participation by 15%. Last year, 343 people at Marshall contributed.

Donors can contribute financially via credit or debit card payment or PayPal, with some team members able to donate a portion of their paycheck during the campaign period. Donors can also contribute their time at a participating charity, with each volunteer hour counted toward the overall fundraising goal. Team members can visit Inside Marshall for more information about this year’s campaign.

Marshall team members visit some of the different charities represented at the CFC kickoff event.
Marshall team members visit some of the different charities represented at the CFC kickoff event.
NASA/Alex Russell

In the Greater Tennessee Valley Zone, there are 69 charities currently listed as active CFC participants, from community health clinics and animal rescues to veteran and social justice groups.

“We can create change by supporting our favorite causes and promoting a greater good,” Marshall Associate Director, Technical, Larry Leopard said at the event kickoff. “For this year’s campaign, I want to challenge everyone at Marshall to donate or volunteer at a local charity. Take the time to discover a cause that you and your family can connect with. Make a small donation, or volunteer as a family or with friends. These actions matter so much to our local nonprofits and our community.”

Learn more about CFC and see the list of participating charities in your community by visiting https://cfcgiving.opm.gov.

› Back to Top

Take 5 with Keith Savoy

By Matt Higgins

Keith Savoy credits his father for teaching him how to do a number of things. His father also inspired him to pursue a career in engineering.

“My dad, a U.S. Marine, sugar cane farmer, and shipping and loading supervisor for CF Industries, inspired me to do lots of things,” said Savoy, chief operating officer at NASA’s Michoud Assembly Facility. “Although he did not have a college degree, he was a jack of all trades and could rebuild vehicle engines, weld, perform carpentry, and do many other tasks that are essential to our daily lives.”

Keith Savoy is the chief operating officer at NASA’s Michoud Assembly Facility.
Keith Savoy is the chief operating officer at NASA’s Michoud Assembly Facility.
NASA/Michael DeMocker

In his role, Savoy oversees the day-to-day administrative and operational functions at Michoud, helping sustain NASA’s SLS (Space Launch System) and Orion spacecraft production efforts, and coordinating requirements and logistics with the facility’s tenant leadership for approximately 3,500 employees. Michoud is managed by NASA’s Marshall Space Flight Center.

In addition to learning from his father, Savoy credits an internship with Lockheed Martin for spurring his interest in working with NASA.

“During my junior year in college, I was selected to an intern program with Lockheed Martin, working for Mr. George Hasting during the summer,” Savoy said. “As a mentor, he provided insight and leadership, as well as piquing my interest in the space program. This is what led me to ultimately accepting a position with Lockheed Martin at Michoud after I graduated.”

Question: What excites you most about the future of human space exploration and your team’s role it?

Savoy: What excites me most about the future of human space exploration is the continued involvement of the Michoud Assembly Facility in the manufacturing of several components for Artemis, including the SLS core stage, future SLS Exploration Upper Stage, and the Orion pressure vessel. Michoud has been involved in the manufacturing and assembly of space flight hardware since the 1960s. I have been fortunate to be involved in the External Tank Program for shuttle and Artemis. I am very proud of the Michoud team’s accomplishment of successfully executing all facility and program modifications to support these two major NASA programs.  

Question: What has been the proudest moment of your career and why?

Savoy: I believe the proudest moments of my career have been every time I have watched a shuttle launch and most recently the Artemis I launch, knowing Michoud and everyone working there contributed to the successful launch. I usually get nervous right before the powerful RS-25 engines ignite and the vehicle slowly pulls away from the launch pad.

Question: Who or what drives/motivates you?

Savoy: I have always been a self-motivated individual, whether it was sports, education, or my career. I am very passionate about a lot of things, as most people who work around me know.

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Savoy: Take every opportunity to cross train in multiple jobs if available. I started my career as an engineer in the Operations and Maintenance organization with Lockheed Martin during the External Tank Program. I held numerous jobs with Lockheed with increasing areas of responsibility to include new business planner, environmental engineer, electrical engineering supervisor, critical systems associate manager, Enhancement Team manager and Operational Planning and Layout manager. After my 20 years with Lockheed Martin, I transitioned to NASA as a logistics engineer for the site and later to the facilities operations manager. Finally, in 2023 I accepted the responsibility of NASA chief operating officer. Each one of these learning opportunities/challenges has provided me with necessary technical and leadership attributes to effectively manage a complex site like Michoud with multiple program and site tenants.

Question: What do you enjoy doing with your time while away from work?

Savoy: I enjoy working out/exercising, relaxing at my camp in Pierre Part, Louisiana, watching or going to LSU Tigers and New Orleans Saints football games, and traveling with my family. We typically have a family vacation once a year; the next one is Yellowstone National Park.

Higgins, a Manufacturing Technical Solutions Inc. employee, works in communications at Michoud Assembly Facility.

› Back to Top

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions

By Ray Osorio

NASA recently built and tested an additively-manufactured – or 3D printed – rocket engine nozzle made of aluminum, making it lighter than conventional nozzles and setting the course for deep space flights that can carry more payloads.

Under the agency’s Announcement of Collaborative Opportunity, engineers from NASA’s Marshall Space Flight Center partnered with Elementum 3D, in Erie, Colorado, to create a weldable type of aluminum that is heat resistant enough for use on rocket engines. Compared to other metals, aluminum is lower density and allows for high-strength, lightweight components.

A hot fire test of a 3D printed nozzle is shown with an orange fire being expelled at Marshall Space Flight Center in Huntsville, Alabama.
The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. The nozzle, made of the novel aluminum alloy 6061-RAM2, experiences huge temperature gradients. As hot gasses approach 6000 degrees Fahrenheit and undergo combustion, icicles are forming on the outside of the engine nozzle.
NASA

However, due to its low tolerance to extreme heat and its tendency to crack during welding, aluminum is not typically used for additive manufacturing of rocket engine parts – until now. 

Meet NASA’s latest development under the Reactive Additive Manufacturing for the Fourth Industrial Revolution, or RAMFIRE, project. Funded under NASA’s STMD (Space Technology Mission Directorate), RAMFIRE focuses on advancing lightweight, additively manufactured aluminum rocket nozzles. The nozzles are designed with small internal channels that keep the nozzle cool enough to prevent melting.

With conventional manufacturing methods, a nozzle may require as many as thousand individually joined parts. The RAMFIRE nozzle is built as a single piece, requiring far fewer bonds and significantly reduced manufacturing time. 

A nozzle is being created by a 3D printer layer by layer. The photo has a golden hue from the light and laser.
At the RPM Innovation facility in Rapid City, South Dakota, manufacturing for a large-scale aerospike demonstration nozzle with integral channels is underway. The laser powder directed energy deposition process creates a melt pool using a laser and blows powder into the melt pool to deposit material layer by layer. NASA engineers will use the nozzle as a proof of concept to inform future component designs.
RPM Innovation

NASA and Elementum 3D first developed the novel aluminum variant known as A6061-RAM2 to build the nozzle and modify the powder used with LP-DED (laser powder directed energy deposition) technology. Another commercial partner, RPM Innovations in Rapid City, South Dakota, used the newly invented aluminum and specialized powder to build the RAMFIRE nozzles using their LP-DED process.

“Industry partnerships with specialty manufacturing vendors aid in advancing the supply base and help make additive manufacturing more accessible for NASA missions and the broader commercial and aerospace industry,” said Paul Gradl, RAMFIRE principal investigator at Marshall.

NASA’s Moon to Mars objectives require the capability to send more cargo to deep space destinations. The novel alloy could play an instrumental role in this by enabling the manufacturing of lightweight rocket components capable of withstanding high structural loads.

A 3D printed circular demonstrator tank is shown on a table in a blue light
Seen here at NASA’s Marshall Space Flight Center, and developed with the same 6061-RAM2 aluminum material used under the RAMFIRE project, is a vacuum jacket manufacturing demonstrator tank. The component, made for cryogenic fluid application, is designed with a series of integral cooling channels that have a wall thickness of about 0.06 inches.
NASA

“Mass is critical for NASA’s future deep space missions,” said John Vickers, principal technologist for STMD advanced manufacturing. “Projects like this mature additive manufacturing along with advanced materials, and will help evolve new propulsion systems, in-space manufacturing, and infrastructure needed for NASA’s ambitious missions to the Moon, Mars, and beyond.”

Earlier this summer at Marshall’s East Test Area, two RAMFIRE nozzles completed multiple hot-fire tests using liquid oxygen and liquid hydrogen, as well as liquid oxygen and liquid methane fuel configurations. With pressure chambers in excess of 825 pounds per square inch – more than anticipated testing pressures – the nozzles successfully accumulated 22 starts and 579 seconds, or nearly 10 minutes, of run time. This event demonstrates the nozzles can operate in the most demanding deep-space environments.

“This test series marks a significant milestone for the nozzle,” Gradl said. “After putting the nozzle through the paces of a demanding hot-fire test series, we’ve demonstrated the nozzle can survive the thermal, structural, and pressure loads for a lunar lander scale engine.”

A female engineer with brown curly hair and a male engineer with short brown hair look at a nozzle on a table that has been through hot fire testing.
NASA engineers Tessa Fedotowsky and Ben Williams, from Marshall, inspect the RAMFIRE nozzle following successful hot-fire testing.
NASA

In addition to successfully building and testing the rocket engine nozzles, the RAMFIRE project has used the RAMFIRE aluminum material and additive manufacturing process to construct other advanced large components for demonstration purposes. These include a 36-inch diameter aerospike nozzle with complex integral coolant channels and a vacuum-jacketed tank for cryogenic fluid applications.

NASA and industry partners are working to share the data and process with commercial stakeholders and academia. Various aerospace companies are evaluating the novel alloy and the LP-DED additive manufacturing process and looking for ways it can be used to make components for satellites and other applications.

Osorio is a public affairs officer with the Marshall Office of Communications.

› Back to Top

Vicky Garcia Speaker for Oct. 30 Marshall Association Event

Vicky Garcia, a launch vehicle systems engineer at NASA’s Marshall Space Flight Center, will be the guest speaker for the Marshall Association Speaker Series on Oct. 30.

Vicky Garcia, a launch vehicle systems engineer at NASA’s Marshall Space Flight Center, will be the guest speaker for the Marshall Association Speaker Series on Oct. 30.
Vicky Garcia, a launch vehicle systems engineer at NASA’s Marshall Space Flight Center, will be the guest speaker for the Marshall Association Speaker Series on Oct. 30.
NASA

The event will be 11 a.m.-12 p.m. The event is free to attend and open to everyone via Teams. Marshall team members can attend in Building 4221, Conference Room 1103. The meeting topic follows this year’s theme of Breaking Boundaries.

In recognition of National Disability Month, Garcia will discuss AstroAccess, a project dedicated to promoting inclusion in human space exploration by paving the way for disabled astronauts.

Since its founding in 2021, AstroAccess has conducted five microgravity missions in which disabled scientists, engineers, veterans, students, athletes, and artists perform demonstrations onboard parabolic flights with the Zero Gravity Corporation, as the first step in a progression toward flying a diverse range of people to space. This project is part of SciAccess, an international non-profit dedicated to advancing disability inclusion in STEM. Read more about AstroAccess.

Email the Marshall Association for questions about the event. For more information on the Marshall Association and how to join, team members can visit their page on Inside Marshall.

› Back to Top

NASA’s OSIRIS-REx Achieves Sample Mass Milestone

The curation team processing NASA’s asteroid Bennu sample has removed and collected 2.48 ounces (70.3 grams) of rocks and dust from the sampler hardware – surpassing the agency’s goal of bringing at least 60 grams to Earth.

And the good news is, there’s still more of NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) sample to collect.

nelson-tagsam-shot-b.jpg?w=2048
The curation team processing NASA’s asteroid Bennu sample from the OSIRIS-REx mission has surpassed the agency’s goal of bringing at least 60 grams to Earth, removing and collecting 2.48 ounces (70.3 grams) of rocks and dust from the sampler hardware.
NASA

The sample processed so far includes the rocks and dust found on the outside of the sampler head, as well as a portion of the bulk sample from inside the head, which was accessed through the head’s mylar flap. Additional material remaining inside the sampler head, called the Touch-and-Go Sample Acquisition Mechanism, or TAGSAM, is set for removal later, adding to the mass total.

In the last week, the team at NASA’s Johnson Space Center changed its approach to opening the TAGSAM head, which contained the bulk of the rocks and dust collected by the spacecraft in 2020. After multiple attempts at removal, the team discovered two of the 35 fasteners on the TAGSAM head could not be removed with the current tools approved for use in the OSIRIS-REx glovebox. The team has been working to develop and implement new approaches to extract the material inside the head, while continuing to keep the sample safe and pristine.

As a first step, the team successfully accessed some of the material by holding down the head’s mylar flap and removing the sample inside with tweezers or a scoop, depending on material size. The collection and containment of material through this method, combined with the earlier collection of material located outside the head, yielded a total mass exceeding the 60 grams required.

The team will spend the next few weeks developing and practicing a new procedure to remove the remaining asteroid sample from the TAGSAM sampler head while simultaneously processing the material that was collected last week. The OSIRIS-REx science team will also proceed with its plan to characterize the extracted material and begin analysis of the bulk sample obtained so far.

All curation work on the sample – and the TAGSAM head – is performed in a specialized glovebox under a flow of nitrogen to keep it from being exposed to Earth’s atmosphere, preserving the sample’s pristine state for subsequent scientific analysis. The tools for any proposed solution to extract the remaining material from the head must be able to fit inside the glovebox and not compromise the scientific integrity of the collection, and any procedures must be consistent with the clean room’s standards.

While the procedure to access the final portion of the material is being developed, the team has removed the TAGSAM head from the active flow of nitrogen in the glovebox and stored it in its transfer container, sealed with an O-ring and surrounded by a sealed Teflon bag to make sure the sample is kept safe in a stable, nitrogen-rich, environment.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington. Read more about Marshall’s role in OSIRIS-REx.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      24/7 Sun Stream : Latest Views of Our Star from NASA SDO
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Marshall Space Flight Center invites the community to help celebrate the center’s 65th anniversary during a free public event noon to 5 p.m. CDT Saturday, July 19, at The Orion Amphitheater in Huntsville, Alabama.
      NASA Marshall, along with its partners and collaborators, will fill the amphitheater with space exhibits, music, food vendors, and hands-on activities for all ages. The summer celebration will mark 65 years of innovation and exploration, not only for Marshall, but for Huntsville and other North Alabama communities.
      “Our success has been enabled by the continuous support we receive from Huntsville and the North Alabama communities, and this is an opportunity to thank community members and share some of our exciting mission activities,” Joseph Pelfrey, director of NASA Marshall, said.
      Some NASA astronauts from Expedition 72 who recently returned from missions aboard the ISS (International Space Station) will participate in the celebratory event.  The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the space station and crew members in attendance will share their experiences in space.
      The official portrait of the International Space Station’s Expedition 72 crew. At the top (from left) are Roscosmos cosmonaut and Flight Engineer Alexey Ovchinin, NASA astronaut and space station Commander Suni Williams, and NASA astronaut and Flight Engineer Butch Wilmore. In the middle row are Roscosmos cosmonaut and Flight Engineer Ivan Vagner and NASA astronaut and Flight Engineer Don Pettit. In the bottom row are Roscosmos cosmonaut and Flight Engineer Aleksandr Gorbunov and NASA astronaut and Flight Engineer Nick Hague. NASA/Bill Stafford and Robert Markowitz “Every day, our Marshall team works to advance human spaceflight and discovery, such as working with our astronauts on the space station.” Pelfrey said. “We are honored Expedition 72 crew members will join us to help commemorate our 65-year celebration.”
      The anniversary event will also include remarks from Pelfrey, other special presentations, and fun for the whole family.
      Learn more about this free community event at:
      https://www.nasa.gov/marshall65
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala. 
      256-640-9065 
      lance.d.davis@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 2 hours ago 4 min read NASA Celebrates Employees Selected for Top Federal Award
      Article 23 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk An unusual star (circled in white at right) behaving like no other seen before and its surroundings are featured in this composite image released on May 28, 2025. A team of astronomers combined data from NASA’s Chandra X-ray Observatory and the Square Kilometer Array Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients. Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      Image credit: X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk
      View the full article
    • By NASA
      X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.
      As described in our press release, a team of astronomers combined data from NASA’s Chandra X-ray Observatory and the SKA [Square Kilometer Array] Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the antics of the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients.
      Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      In this composite image, X-rays from Chandra (blue) have been combined with infrared data from NASA’s Spitzer Space Telescope (cyan, light blue, teal and orange), and radio from LOFAR (red). An inset shows a more detailed view of the immediate area around this unusual object in X-ray and radio light.
      A wide field image of ASKAP J1832 in X-ray, radio, and infrared light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Using Chandra and the SKA Pathfinder, a team of astronomers found that ASKAP J1832 also dropped off in X-rays and radio waves dramatically over the course of six months. This combination of the 44-minute cycle in X-rays and radio waves in addition to the months-long changes is unlike anything astronomers have seen in the Milky Way galaxy.
      A close-up image of ASKAP J1832 in X-ray and radio light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk The research team argues that ASKAP J1832 is unlikely to be a pulsar or a neutron star pulling material from a companion star because its properties do not match the typical intensities of radio and X-ray signals of those objects. Some of ASKAP J1832’s properties could be explained by a neutron star with an extremely strong magnetic field, called a magnetar, with an age of more than half a million years. However, other features of ASKAP J1832 — such as its bright and variable radio emission — are difficult to explain for such a relatively old magnetar.
      On the sky, ASKAP J1832 appears to lie within a supernova remnant, the remains of an exploded star, which often contain a neutron star formed by the supernova. However, the research team determined that the proximity is probably a coincidence and two are not associated with each other, encouraging them to consider the possibility that ASKAP J1832 does not contain a neutron star. They concluded that an isolated white dwarf does not explain the data but that a white dwarf star with a companion star might. However, it would require the strongest magnetic field ever known for a white dwarf in our galaxy.
      A paper by Ziteng Wang (Curtin University in Australia) and collaborators describing these results appears in the journal Nature. Another team led by Di Li from Tsinghua University in China independently discovered this source using the DAocheng Radio Telescope and submitted their paper to the arXiv on the same day as the team led by Dr Wang. They did not report the X-ray behavior described here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two composite images of a mysterious object, possibly an unusual neutron star or white dwarf, residing near the edge of a supernova remnant. The object, known as ASKAP J1832, has been intriguing astronomers from the Chandra X-ray Observatory and Square Kilometre Array Pathfinder radio telescope with its antics and bizarre behavior.
      Astronomers have discovered that ASKAP J1832 cycles in radio wave intensity every 44 minutes. This is thousands of times longer than pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. Using Chandra, the team discovered that the object is also regularly varying in X-rays every 44 minutes. This is the first time such an X-ray signal has been found in a long period radio transient like ASKAP J1832.
      In the primary composite image of this release, the curious object is shown in the context of the supernova remnant and nearby gas clouds. Radio data is red and and X-ray sources seen with Chandra are in dark blue. The supernova remnant is the large, wispy, red oval ring occupying the lower right of the image. The curious object sits inside this ring, to our right of center; a tiny purple speck in a sea of colorful specks. The gas cloud shows infrared data from NASA’s Spitzer Space Telescope and resembles a mottled green, teal blue, and golden orange cloud occupying our upper left half of the square image.
      The second, close-up image shows a view of the immediate area around ASKAP J1832. In this composite image, infrared data from Spitzer has been removed, eliminating the mottled cloud and most of the colorful background specks. Here, near the inside edge of the hazy red ring, the curious object resembles a bright white dot with a hot pink outer edge, set against the blackness of space. Upon close inspection, the hot pink outer edge is revealed to have three faint spikes emanating from the surface.
      The primary and close-up images are presented both unadorned, and with labels, including fine white circles identifying ASKAP J1832.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 28, 2025 EditorLee Mohon Related Terms
      Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Neutron Stars Pulsars Stars The Universe
      Explore More
      2 min read Hubble Spies a Spiral So Inclined
      The stately and inclined spiral galaxy NGC 3511 is the subject of this NASA/ESA Hubble…
      Article 5 days ago 2 min read How Big is Space? We Asked a NASA Expert: Episode: 61
      Article 7 days ago 3 min read Discovery Alert: A Possible Perpendicular Planet
      The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Universe
      IXPE
      Stars
      Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
      Solar System
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...