Jump to content

Record Number of Sea Turtles Hatch at NASA Spaceport


NASA

Recommended Posts

  • Publishers
2010-4192~large.jpg?w=1920&h=1280&fit=cl
Sea turtle hatchlings emerge from their eggs at Kennedy Space Center in Florida.
NASA

Humans aren’t the only living creatures using NASA’s Kennedy Space Center as their launchpad to the future. This year, a record number of sea turtle hatchlings got their start in nests built on the undisturbed beaches of the Florida spaceport.

Biologists counted 13,935 sea turtle nests along Kennedy’s shoreline during the 2023 nesting season, 639 more nests than 2022 and the most found on center in a single year since record-keeping began in 1984. All of those sea turtle nests belong to species identified by the U.S. National Park Service as endangered or threatened, including the green (Chelonia mydas) and loggerhead (Caretta caretta).

“All our effort to protect Kennedy’s habitat is bearing fruit,” said NASA Environmental Protection Specialist Jeff Collins. “Kennedy’s use of turtle-friendly lighting and having a properly maintained dune helps to keep our beach dark and that really makes a difference to sea turtle nesting success.”

NASA partners to preserve the turtles and other fauna and flora at the spaceport with the Merritt Island National Wildlife Refuge and Canaveral National Seashore, which share a boundary with Kennedy. Working together, biologists found more than 8,800 nests at Kennedy this year were made by greens, with loggerheads creating almost 5,100.

Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.

“Kennedy’s sea turtle nests usually make up around 10% of the number Florida Fish and Wildlife reports in any given year,” said United States Fish and Wildlife Service Biologist Michael Legare. “Brevard, the Florida county where Kennedy is located, is particularly important to the future of loggerheads. That county and five others nearby – Indian River, St. Lucie, Martin, Palm Beach, and Broward – usually report around 80% of all loggerhead nests yearly in the Sunshine State.”

Florida normally sees between 40,000 to 84,000 sea turtle nests built annually, according to state Fish and Wildlife data.

From the beginning of March through the end of October, the sand on Kennedy’s beaches is marked with the tracks of adult sea turtles as they emerge from the sea and make their way to where they lay their eggs. If all goes well, much smaller sand tracks follow months later when the hatchlings leave their nests and head to the sea, assuming they have the proper guidance to get there.

“Giving the sea turtles, especially the hatchlings, nothing but the moon and stars to shine their path to the ocean is one big way humans can help them,” Collins said. “Any other light can disorient them enough to where they’ll never find the ocean, making them easy prey while leading them away from the food and water they need to survive.”

Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
NASA

That is why closing window blinds or removing artificial beach lights are also important for shoreline buildings. “If the lights have to stay, then it’s essential that the bulbs be dimmed or replaced with amber or low wave-length lighting. Such simple things can make the difference between life and death for the turtles,” Legare said.

This year’s count includes 26 leatherback (Dermochelys coriacea) nests and one Kemp’s ridley (Lepidochelys kempii) nest, one of the world’s most endangered sea turtle species. There were no hawksbill (Eretmochelys imbricata) nests discovered this season at Kennedy. Like the Kemp’s ridley, the endangered hawksbill has been documented at Kennedy in the past, but both species are a rare sight on the spaceport’s beaches.

The leatherback, the largest of the sea turtle species that regularly nests at Kennedy, is normally among the first to lay their eggs in March. If any Kemp’s ridley or hawksbills come on shore to build their nests, that usually starts a month or so after the leatherbacks. Greens and loggerheads, the more common sea turtle species at Kennedy, often start nesting in late spring and continue through the summer months into fall.

The number of eggs in each nest and how many of them hatch successfully aren’t tracked by state biologists, but on average, greens lay around 110 per nest, with loggerheads (100) and leatherbacks (80) close behind. Hawksbills lay around 160 eggs per nest on average, while Kemp’s ridley average around 100 per nest.

Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
Sea turtle hatchlings make their way from their nests to the Atlantic Ocean at Kennedy Space Center in Florida.
NASA

It generally takes around two months for the sea turtle babies to emerge from their nest once the eggs are inside, but that can vary depending on the species. Sand temperature also plays a big role in determining the sex of the new turtles. Cooler temperatures produce more males and warmer temperatures bring more females.

Florida Fish and Wildlife data shows about one of every 1,000 baby turtles makes it to adulthood.

“The continued success of sea turtle nests at Kennedy shows that it is possible to explore space while maintaining the ecosystem,” Collins said. “As the spaceport’s launch cadence grows, we will continue our efforts to preserve that balance into the future.”

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronaut Mary L. Cleave. April 8, 1985NASA Retired NASA astronaut Mary Cleave, a veteran of two NASA spaceflights, died Nov. 27. She was 76. A scientist with training in civil and environmental engineering, as well as biological sciences and microbial ecology, Cleave was the first woman to serve as an associate administrator for NASA’s Science Mission Directorate.
      Born in Southampton, New York, Cleave received a Bachelor of Science degree in biological sciences from Colorado State University, Fort Collins, in 1969, and Master of Science in microbial ecology and a doctorate in civil and environmental engineering, both from Utah State University, Logan, in 1975 and 1979, respectively.
      “I’m sad we’ve lost trail blazer Dr. Mary Cleave, shuttle astronaut, veteran of two spaceflights, and first woman to lead the Science Mission Directorate as associate administrator,” said NASA Associate Administrator Bob Cabana. “Mary was a force of nature with a passion for science, exploration, and caring for our home planet. She will be missed.”
      Cleave was selected as an astronaut in May 1980. Her technical assignments included flight software verification in the SAIL (Shuttle Avionics Integration Laboratory), spacecraft communicator on five space shuttle flights, and malfunctions procedures book and crew equipment design.
      Cleave launched on her first mission, STS-61B, aboard space shuttle Atlantis on Nov. 26,1985. During the flight, the crew deployed communications satellites, conducted two six-hour spacewalks to demonstrate space station construction techniques, operated the Continuous Flow Electrophoresis experiment for McDonnell Douglas and a Getaway Special container for Telesat and tested the Orbiter Experiments Digital Autopilot.
      Cleave’s second mission, STS-30, which also was on Atlantis, launched May 4, 1989. It was a four-day flight during which the crew successfully deployed the Magellan Venus exploration spacecraft, the first planetary probe to be deployed from a space shuttle. Magellan arrived at Venus in August 1990 and mapped more than 95% of the surface. In addition, the crew also worked on secondary payloads involving indium crystal growth, electrical storms, and Earth observation studies.
      Cleave transferred from NASA’s Johnson Space Center in Houston to the agency’s Goddard Space Flight Center in Greenbelt, Maryland in May 1991. There, she worked in the Laboratory for Hydrospheric Processes as the project manager for SeaWiFS (Sea-viewing, Wide-Field-of-view-Sensor), an ocean color sensor which monitored vegetation globally.
      In March 2000, she went to serve as deputy associate administrator for advanced planning in the Office of Earth Science at NASA’s Headquarters in Washington. From August 2005 to February 2007, Cleave was the associate administrator for NASA’s Science Mission Directorate where she guided an array of research and scientific exploration programs for planet Earth, space weather, the solar system, and the universe. She also oversaw an assortment of grant-based research programs and a diverse constellation of spacecraft, from small, principal investigator-led missions to large flagship missions.
      Cleave’s awards included: two NASA Space Flight medals; two NASA Exceptional Service medals; an American Astronautical Society Flight Achievement Award; a NASA Exceptional Achievement Medal; and NASA Engineer of the Year.
      Cleave retired from NASA in February 2007.
      https://go.nasa.gov/3uDCykl
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.
      NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.
      Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.
      During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.
      The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.
      Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.
      Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.
      Social Media
      Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts:
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
      Details
      Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      3 min read NASA to Highlight Inclusion During Bayou Classic Event 
      Article 1 week ago 9 min read Lagniappe
      Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
      Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      2 min read
      NASA’s Hubble Space Telescope Pauses Science Due to Gyro Issue
      Hubble orbiting more than 300 miles above Earth as seen from the space shuttle. NASA NASA is working to resume science operations of the agency’s Hubble Space Telescope after it entered safe mode Nov. 23 due to an ongoing gyroscope (gyro) issue. Hubble’s instruments are stable, and the telescope is in good health.
      The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings. The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground.
      Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23.
      The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.
      NASA anticipates Hubble will continue making groundbreaking discoveries, working with other observatories, such as the agency’s James Webb Space Telescope, throughout this decade and possibly into the next.
      Launched in 1990, Hubble has been observing the universe for more than 33 years. Read more about some of Hubble’s greatest scientific discoveries.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Alise Fisher
      NASA Headquarters, Washington, D.C.
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Nov 29, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Galaxies Stories
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Stars Stories
      View the full article
    • By NASA
      A view of the Earth with Aurora Borealis and an orbital sunrise taken by the Expedition 35 crew aboard the International Space Station.NASA Two small businesses are benefitting from NASA’s expertise as they develop heat shield technologies, cargo delivery systems, and new protective materials for spacecraft and space stations in the growing commercial industry of low Earth orbit operations.
      The two American companies – Canopy Aerospace Inc. of Littleton, Colorado and Outpost Technologies Corp. of Santa Monica, California – recently announced progress in the development of a new heat shield manufacturing capability and a new cargo transportation system for potential use on the International Space Station and future commercial space stations.
      “These projects are a great example of how NASA is supporting a growing commercial space industry,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “There is an entire ecosystem emerging where companies are working together and innovating to meet NASA’s needs and also positioning themselves to reach new customers, so that NASA can be just one of many customers in low Earth orbit.”
      The companies work with NASA’s Commercial Low Earth Orbit Development Program through SBIR (Small Business Innovation Research) contracts funded by NASA’s Space Technology Mission Directorate. Both contracts are part of an innovative pilot program known as SBIR Ignite, focused on small businesses with commercially viable technology ideas aligned with NASA mission needs that can help support the expanding aerospace ecosystem.
      Improving heat shields, saving time
      A piece of Thermal Protection System (TPS) material undergoes high temperature testing at Canopy Aerospace’s facility in Littleton, Colorado. Canopy Aerospace Canopy Aerospace Inc., a venture-funded startup, is collaborating with NASA to develop a new manufacturing system that can improve production of ceramic heat shields – otherwise referred to as thermal protection systems (TPS). In the vacuum of space, spacecraft and space station hardware must withstand extreme cold and heat environments. Upon re-entry to Earth’s atmosphere, these craft in low Earth orbits are exposed to temperatures as high as 3,000 degrees Fahrenheit.
      To protect spacecraft and space stations during re-entry, engineered TPS are required. NASA developed the first TPS types under the Space Shuttle Program, and similar technologies are still used today to protect the Orion spacecraft as it returns to Earth from space. Canopy’s RHAM (Reusable Heatshields Additive Manufacturing) platform builds on the shuttle program’s heritage methods, but utilizes novel materials, new binding, and heat treatment processes to create a new type of ceramic heat shield and produce it at scale in the commercial sector.
      As more companies enter the commercial space market, improved heat shield manufacturing methods are critical to driving down launch costs, shortening lead times, and enabling new mission capabilities for future spacecraft.
      Transporting cargo, saving space
      A concept infographic depicting the Cargo Ferry cargo transportation vehicle’s launch and return process. Outpost Technologies Outpost Technologies Corp. is collaborating with NASA to develop a new cargo transport vehicle, named Cargo Ferry. The reusable vehicle consists of a payload container for cargo, solar array wings to power the vehicle, a deployable heat shield to protect it on re-entry to Earth’s atmosphere, and a robotic paraglider system to deliver it safely to the ground with “landing pad” precision.
      Cargo Ferry could transport non-human cargo including science and hardware from space stations back down to Earth more frequently, freeing up vital research and stowage space on board the station. Commercial space stations are expected to be smaller than the International Space Station, thus systems like Cargo Ferry could offer a more versatile and adaptable solution for cargo transportation.
      NASA is supporting the design and development of multiple commercial space stations with three funded partners, as well as several other partners with unfunded agreements through NASA’s Collaborations for Commercial Space Capabilities-2 project.
      NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      For more information about NASA’s commercial space strategy, visit:
      https://www.nasa.gov/humans-in-space/commercial-space/
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Rebecca Turkington
      Johnson Space Center, Houston
      281-483-5111
      rebecca.turkington@nasa.gov
      Keep Exploring Discover More Topics
      Low Earth Orbit Economy
      Commercial Space
      Humans In Space
      Space Station Research and Technology
      View the full article
    • By NASA
      3 min read
      NASA’s Dragonfly to Proceed with Final Mission Design Work
      Artist’s Impression: Dragonfly Departs and heads off toward its next landing spot on Titan. Image credit: NASA/Johns Hopkins APL/Steve Gribben NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and fabrication – known as Phase C – during fiscal year (FY) 2024. The agency is postponing formal confirmation of the mission (including its total cost and schedule) until mid-2024, following the release of the FY 2025 President’s Budget Request.
      Earlier this year, Dragonfly – a mission to send a rotorcraft to explore Saturn’s moon Titan – passed all the success criteria of its Preliminary Design Review. The Dragonfly team conducted a re-plan of the mission based on expected funding available in FY 2024 and estimate a revised launch readiness date of July 2028. The Agency will officially assess the mission’s launch readiness date in mid-2024 at the Agency Program Management Council.
      “The Dragonfly team has successfully overcome a number of technical and programmatic challenges in this daring endeavor to gather new science on Titan,” said Nicola Fox, associate administrator of NASA’s Science Mission Directorate at NASA headquarters in Washington. “I am proud of this team and their ability to keep all aspects of the mission moving toward confirmation.”
      Dragonfly takes a novel approach to planetary exploration, for the first time employing a rotorcraft-lander to travel between and sample diverse sites on Titan. Dragonfly’s goal is to characterize the habitability of the moon’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan.
      Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin Space in Littleton, Colorado; Sikorsky, a Lockheed Martin company; NASA’s Ames Research Center in Silicon Valley, California; NASA’s Langley Research Center in Hampton, Virginia; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory in Southern California; CNES (Centre National d’Etudes Spatiales), the French space agency, in Paris, France; DLR (German Aerospace Center) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo, Japan. Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate.
      Share








      Details
      Last Updated Nov 28, 2023 Editor WILLIAM KEETER Related Terms
      Dragonfly Planetary Science Planetary Science Division Saturn Science & Research Science Mission Directorate The Solar System View the full article
  • Check out these Videos

×
×
  • Create New...